
Dr Barnes and Gillett comment:

We thank Dr Trere for his interest in our editorial. He is obviously a keen proponent of this technique, however, the value of AgNORs in pathology remains controversial, as denoted by the large number of conflicting publications. In response to his footnotes 2 and 3 of our editorial, we would like to confirm our original points.

The accurate identification of AgNORs is highly dependent upon tissue preparation and mounting techniques. During fixation, silver deposition and hence loss of NOR definition can occur as a result of variations in tissue thickness, the use of different fixatives and prolonged fixation times. These features also affect the amount of non-specific staining, which can cause problems with the accurate identification of AgNORs.

The universally accepted method of evaluating AgNORs. Counting methods have evolved in order to obtain as much information as possible about demonstrable NORs and have counted as discernible NORs, others have counted the number of NOR clusters and satellites, whilst further groups have incorporated the AgNOR distribution pattern into their assessment. As we have previously shown, there is marked variation in the numbers of cells assessed, 100–200 being the usual number, far less than would be evaluated when staining with a proliferation marker such as Ki67 or KI67. By Dr Trere's own admission these enumerative methods are "time-consuming and subjective". However, manual counting is the only method of evaluating open to most pathologists, who do not have the necessary equipment to carry out computer aided image analysis. Most studies have combined AgNOR scores with established methods of predicting prognosis and directly with clinical outcome. Whether AgNORs are associated with proliferation or cell proliferation requires further clarification.

There are studies which have shown AgNORs to be associated with patient prognosis but among these, the prognostic value of AgNORs is less than in the more established methods and in some cases do not provide independent prognostic information when included in multivariate analyses.

In conclusion, we stand by our previous statement that AgNORs were of great interest when they were one of the few methods of assessing proliferative activity in formalin fixed, paraffin wax embedded material. As a prognostic marker, AgNORs have now been superseded by other methods, in particular the development of the Ki67 associated antibody, which are easy to use and are open to more standardised quantification.

Correspondence

If you wish to order or require further information regarding the titles reviewed here, please write to or telephone the BMJ Bookshop, PO Box 295, London WC1J 9RJ. Tel. 0171 383 6540 or 6662. Books are supplied post free in the UK and for BFPO addresses. Overseas customers should add 15% for postage and packing. Payment can be made by cheque in sterling drawn on a UK bank or by international postal order (Mastercard, Visa, or American Express) stating card number, expiry date, and full name. (The price and availability are occasionally subject to revision by the Publishers.)

This book provides a series of practical demonstrations, which may be undertaken by students themselves, to illustrate some of the fundamental concepts of genetics. It is aimed at first year undergraduates with questions and reassurances on each topic. The authors find themselves in the curious position of having to defend the use of practical laboratory work in courses on genetics which are also practical and succinct.

The book was first published in 1951 and is now in its 10th edition and therefore clearly has found a niche in this particular market. No doubt the book has evolved a great deal since the first edition but unfortunately some mutations have crept in over this period of time.

In the chapter on "Linkage and Crossing-over" somatic mapping is explained in great detail in the section on human gene mapping. Other approaches (for example, in situ hybridisation) are dealt with in one line—surely unusual for a textbook published in 1995. In the chapter on "Human Chromosomes" the chromosome pairs 17 and 18 are transposed in one figure (Fig 11.3) and the ISCN karyotype for Turner syndrome is incorrectly given as 47,XY; X versus 47,XXX. In the same chapter the cytogenetic consequences of the presence of the Philadelphia chromosome, observed in chronic myeloid leukaemia, are incorrectly described.

One is left with the impression that some parts of this book may have evolved faster than other parts. The book may be useful for classic genetic experiments but care should be exercised in relying upon it as a source of instruction and information in those areas undergoing rapid development such as human gene mapping, which will benefit from revision for the next edition.

J WATERS

The era of the coffee-table science text is clearly with us! This book is beautifully produced and illustrated, with striking photo-
Concepts of Genetics

J Crocker

Clin Mol Pathol 1995 48: M220
doi: 10.1136/mp.48.4.M220-b

Updated information and services can be found at:
http://mp.bmj.com/content/48/4/M220.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/