The synthesis of Bcl-2 and other proteins in the neoplastic follicles of follicular lymphoma

I A Lampert

The bcl-2 proto-oncogene was discovered at the chromosomal breakpoint of the t(14;18) translocation found in human follicular lymphomas; t(14;18) juxtaposes the bcl-2 gene from chromosome 18 with the immunoglobulin heavy chain (IGH) locus on chromosome 14. This creates a bcl-2–IGH fusion gene that is markedly deregulated, resulting in the overproduction of bcl-2 RNA and protein. bcl-2 has the oncogenic function of blocking programmed cell death. Furthermore, bcl-2–IGH transgenic mice overexpress the bcl-2 gene in lymphoid tissues and develop a polyclonal expansion of small resting B cells. These cells accumulate because they fail to die, demonstrating prolonged survival. However, these B cells can proceed to high grade lymphomas, suggesting that extended cell survival is tumorigenic.

The germinal centre of the lymphoid follicle provides a microenvironment for the generation of memory B cells and plasma cells. After stimulation with antigen, B cell blasts seed the primary follicle, which matures into a secondary germinal centre with well defined anatomical zones. Bcl-2 protein staining is intense in the follicular mantle zone. B lymphocytes within the interfollicular regions are often positive. In striking contrast, most cells within the germinal centre are negative for Bcl-2. Centroblasts within the dark zone fail to stain for Bcl-2, which is also absent from centrocytes in the basal portion of the light zone, laden with tingible body macrophages. Bcl-2 protein returns uniformly at low intensity within the more apical portion of each light zone, where residual antigen localised to the surface of follicular dendritic cells appears to select high affinity B cells. Most Bcl-2 positive cells coexpress the CD22 B cell marker but not the CD3 T cell marker.

There is considerable evidence to suggest that the follicular lymphoma known also as follicle centre cell lymphoma or centroblastic/centrocytic lymphoma is the neoplastic equivalent of the normal germinal centre. It is composed of B cells in a background of follicular dendritic cells. The cellular composition of centroblasts and centrocytes reflects the appearance of cells in the normal germinal centre and these cells are of B cell lineage. Analysis of the DNA shows not only clonal gene rearrangement but also evidence of ongoing somatic mutation and antigen affinity selection.

In contrast to the benign follicle, the cells of most cases of follicular lymphoma are Bcl-2 positive. Because 85–90% of cases of follicular lymphoma have the t(14;18) translocation, it has been assumed that this translocation causes excess stimulation of the bcl-2 gene and is therefore responsible for the Bcl-2 positivity of the neoplastic follicles.

However, there is evidence suggesting that this is not the case, namely:

- Many low grade B cell lymphomas such as chronic lymphocytic leukaemia (CLL) are Bcl-2 positive without showing the t(14;18) translocation.
- There are cases of follicular lymphomas that do not show the t(14;18) translocation, yet the neoplastic follicles are Bcl-2 positive.
- Although all low grade follicular lymphomas are Bcl-2 positive, only 75% of high grade follicular lymphomas are Bcl-2 positive.
- Within an individual lymphoma, there is a variability in Bcl-2 positivity, with the proliferating centroblasts being negative and the centrocytes positive.
- If the t(14;18) translocation was the explanation for the expression of the phenomenon, one would expect that in the neoplastic follicle there would be far more bcl-2 mRNA than in the benign follicles, which is not true. There is abundant bcl-2 mRNA as assessed by in situ hybridisation in the benign follicles, possibly more that is found in the neoplastic ones.
- In cases where there are bcl-2 negative follicles and an interfollicular neoplastic infiltrate, there is a strange appearance of the negative follicles, contrasting with the positive interfollicular areas (P Kluin, personal communication, 1998).

What makes this even less credible a story is the evidence that the phenomena that affect the expression of the bcl-2 gene in benign and neoplastic follicles affect several other proteins. Thus:

- The synthesis of several proteins is known to be downregulated when B cells move into the germinal centres—for example, CD44, L selectin, CD24, CD45RA, and several other uncharacterised proteins. Of these, CD24 and CD24RA are present in 60–80% of the
Bcl-2 negative. Similarly, the marginal zone follicular portions of the white pulp are Bcl-2 areas of the white pulp. Neoplastic cells in the marginal zone as well as the other B cell cells, which are light chain restricted, populate the spleen then neoplastic lymphoma a

V proteins, there is no special e

In the normal germinal centre the cells show +

Follicular dendritic cells in normal germinal +

+ is poorly formed and the neoplastic cells proliferate the synthesis of cytoplasmic Bcl-2 is +

expression of the genes encoding CD24 and Bcl-2. This has led us to consider the proposition that the expression of the genes encoding Bcl-2 and these other proteins in neoplastic follicles is not so much a factor of an inherent property but an anomaly consequent on the failure of

It has been shown that when follicular lymphoma affects the spleen then neoplastic cells, which are light chain restricted, populate the marginal zone as well as the other B cell areas of the white pulp. Neoplastic cells in the follicular portions of the white pulp are Bcl-2 positive, whereas those in the marginal zone are Bcl-2 negative. Similarly, the marginal zone tumour cells are negative for both CD24 and CD45RA (unpublished data, 1998).

Thus, for this and probably the other proteins, there is no special effect on mRNA translation mechanisms in the germinal centre.

It is of interest that the average state of proliferation in a follicular lymphoma is that of the most mature type in the apical portion of the light zone, a consequence of their survival, escape from apoptosis, and subsequent maturation.

Staining for Bcl-2 is used extensively in the diagnosis of follicular lymphoma. Although it is very useful, anomalies have been encountered that are not predictable, nor easily explicable. This suggests that much has to be learned of the biology of this disease.

14 Paramithiotis E, Cooper MD. Memory B lymphocytes migrate to bone marrow in humans. Proc Natl Acad Sci USA 1997;94:208–12.
The synthesis of Bcl-2 and other proteins in the neoplastic follicles of follicular lymphoma.

I A Lampert

Mol Path 1999 52: 29-31
doi: 10.1136/mp.52.1.29

Updated information and services can be found at:
http://mp.bmj.com/content/52/1/29.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/