Receptor revision of immunoglobulin heavy chain genes in human MALT lymphomas

D Lenze, A Greiner, C Knörr, I Anagnostopoulos, H Stein, M Hummel

Background/Aims: Rearrangement of immunoglobulin gene segments, leading to B cells with functional receptors, is thought to be largely restricted to developing immature B cells in bone marrow. However, accumulating evidence suggests that mature B cells occasionally modify their antigen specificity by VH segment replacements during the germinal centre reaction to enhance antigen affinity, or to overcome self-reactive antigen receptors. Although malignant B cells maintain the features of their normal counterparts in most instances, to date, such replacements have not been described for human B cell lymphomas.

Methods: Rearranged immunoglobulin heavy chain genes from two extranodal marginal zone B cell lymphomas were amplified, cloned, and sequenced. Sequences with identical CDR3 regions were selected and aligned to each other and public databases.

Results: VH replacements were seen in two extranodal marginal zone B cell lymphomas. In line with the hypothesis that in mature B cells these replacements are associated with active somatic hypermutation, in addition to VH replacement, different mutation patterns were seen in the revised VH portions. In the remaining common 3’-VH regions, these mutations could be used to establish a phylogenetic relation between the sequences, rendering the possibility of artefactual chimaeric polymerase chain reaction products very unlikely.

Conclusions: These results support the view that VH replacements are a further mechanism for reshaping antigen affinity and specificity, and indicate that these receptor modifications are not restricted to normal and reactive germinal centre B cells, but may also occur in close association with the development of malignant B cell lymphomas.

“The expression receptor revision is used when mature B cells alter their receptors in response to antigenic stimulation”

Recently, however, evidence has been accumulating to suggest that, despite expressing functional antibodies on their cell surface, B cells can continue to rearrange their immunoglobulin (Ig) genes, and that these rearrangements can occur both on the same allele and on the second allele. Although this phenomenon was originally described for the heavy chain locus of mouse lymphoma cell lines,5–7 most subsequent studies have focused on the light chain.4,6–8 Because the heavy chain (IgH) gene locus is organised in a different way to that of the light chains, ongoing rearrangements at this region were considered to be unlikely and irrelevant for human B cell development. It was argued that after the primary rearrangement, no more D segments are left to join new V and J segments, yet, through transgenic mouse models10–14 and observations of human B cells,15,16 it became evident that the heavy chain can be edited by exchanging only the VH portion of the rearranged VDJ gene with a new VH segment (VH replacement). Dependent on the developmental status of the B cell, these secondary rearrangements seem to serve different purposes. In immature B cells, they enable the editing of self reactive receptors and thus play a role in mediating tolerance.10,17–19 For this, the term “receptor editing” has been introduced. The expression “receptor revision” is used when mature B cells alter their receptors in response to antigenic stimulation.

Abbreviations: FR, framework; Ig, immunoglobulin; IgH, immunoglobulin heavy chain; MALT, mucosa associated lymphoid tissue; PCR, polymerase chain reaction
stimulation. The purpose of this kind of secondary recombination is not yet clear. It might serve as an additional mechanism to create diversity within the antibody repertoire, or to eliminate unproductive or self-reactive rearrangements generated through the introduction of somatic mutations.

Here, we describe VH replacement in the in situ tumour cells of two human mucosa associated lymphoid tissue (MALT) lymphomas. Based on their immunophenotypical features, MALT lymphomas are thought to derive from post-germinal centre memory B cells. However, the detection of intraclonal diversity in the clonally rearranged IgH genes of the tumour cells is suggestive of a close relation to germinal centres. The observation of Ig receptor revision in the two MALT lymphomas described here is in accordance with such a setting of mutational activity, and corresponds with the diversity driven mechanism of this phenomenon. Moreover, it demonstrates that receptor revision is not only active in normal germinal centre B cells, but also in germinal centre related B cell lymphomas.

METHODS

Patient material

Both tumours were diagnosed as low grade MALT lymphomas according to the World Health Organisation classification. They displayed the same immunophenotype (CD19+, CD20+, CD5-, IgD+, IgM+), except that the tumour in case 1 used a κ light chain and the case 2 tumour was Igλ+. In case 1 the tumour was of gastric origin, whereas the tumour in case 2 was localised in the thyroid.

Preparation of nucleic acids for the polymerase chain reaction

Genomic DNA and total RNA were isolated from frozen tissue sections with the QIAamp DNA mini kit and the RNeasy mini kit, respectively, according to the manufacturer’s protocol (Qiagen, Hilden, Germany). For amplification, 1 µg of RNA was then transcribed into cDNA using random hexamers or OligoDT15 primers and reverse transcriptase (GeneAmp RNA PCR core kit; Perkin Elmer, Foster City, California, USA). Amplification for each primer pair was performed in a volume of 100 µl with 0.2 mM of each dNTP, 1.5 mM MgCl₂, AmpliTaq buffer II, 2.5 units of AmpliTaq Gold, and 20 pmol of each primer. Cycling parameters consisted of 10 minutes at 95°C, followed by 95°C for 25 seconds, 60°C for 30 seconds, and 72°C for 30 seconds for 40 cycles, with a final elongation step of 72°C for 10 minutes.

GeneScan analysis

GeneScan analysis (ABI 310; Applied Biosystems) was performed to demonstrate the presence of clonal VDJ rearrangements and to determine their size. For this purpose, reamplification was carried out with a fluorescence (FAM) labelled JH primer (LJH) and the final elongation step was extended to 45 minutes. Fluorescence labelled PCR products were separated on a sequencing gel and evaluated by the GeneScan software 672 (Applied Biosystems).

Cloning and sequence analysis of PCR products

Unlabelled PCR products were separated by polyacrylamide gel electrophoresis and bands representing clonal VDJ rearrangements were cut out, eluted in distilled water overnight, and cloned into the pcRII-TOPO vector (TOPO TA cloning kit; Invitrogen, Breda, The Netherlands). Plasmid DNA from several clones (Quantum Prep plasmid miniprep kit; BioRad, Hercules, California, USA) was sequenced in both directions (Big Dye Terminator cycle sequencing kit, Applied Biosystems), using an automated DNA sequencer (DNA Sequencing Automat 377; Applied Biosystem). The sequences obtained were compared with each other and with our own and published databases (IMGT/International ImMunoGeneTics database, Marie-Paule Lefranc, Montpellier, France; http://imgt.cines.fr:8104) to determine the corresponding germline segments and the number and location of somatic mutations.

RESULTS

Detection of clonal IgH rearrangements

Dominant amplificates of 233 bp (case 1) and 245 bp (case 2) were detectable after nested primer IgH PCR and GeneScan analysis. In addition to the prominent PCR product, a moderate polyclonal B cell background was present. The clonal IgH PCR products were cloned and subsequently sequenced.

Sequence analysis of case 1

Fifty seven sequences from case 1 were used for analysis of the IgH rearrangements. These sequences were obtained from three different independent PCR experiments, each starting from a new aliquot of DNA. Twenty six of these rearrangements shared the same CDR3 portion and JH segment, in addition to a part of their rearranged VH segment (fig 1, positions 224 to 296, numbering according to Chothia and colleagues). The remaining 31 IgH rearrangements displayed no similarities to each other, or to the 26 other sequences of this case. This indicated that they originated from the polyclonal B cell background present in this case.
The 26 rearrangements with identical CDR3 and JH sequences could be divided into three groups (fig 1). One group comprised 23 sequences that shared, in addition to their common CDR3/JH portion, the same VH segment (VH3–23), and varied by only a few single nucleotide substitutions (group 2). Sequences belonging to this group could be detected in each of the three independently performed PCR experiments in this case. The other two groups were represented by one and two sequences, respectively. These three sequences all derived from different PCRs. Although identical in their CDR3/JH sequences, and containing the same 3′-VH portion (positions 224–296) as the sequences of group 2, the 5′-VH parts (positions 126–223) of group 1 and 3 were clearly different to each other and to the sequences from group 2. The 5′-VH region of group 1 disclosed the highest homology to VH3–07, whereas the 5′-VH sequences of group 3 were most closely related to VH3–30.

Analysis of the mutations in these 26 sequences showed the same five somatic mutations in all 5′-VH portions when compared with the germline VH segment VH3–07 (figs 1 and 2). Another five base substitutions were identical in group 2 and in the 23 sequences of group 2. The 5′-VH region of group 1 harboured, in addition to the five common mutations, six individual somatic mutations not present in all the other sequences of this case. This pattern of shared and differentially acquired somatic mutations (ongoing mutations) demonstrates a phylogenetic relation between the sequences.

The alignment of the differing 5′-VH portions to their most closely related germline segments revealed seven further mutations in the 23 sequences of group 2, resulting in a total of 17 somatic mutations. Group 1 contained six further mutations in the 5′-VH3–07 portion, in addition to the 11 mutations in its 3′-VH portion. The two sequences of group 3, which displayed 10 mutations in the 3′-VH3–07 portion, contained no (group 3.1) or two (group 3.2) further somatic mutations in the 5′-VH3–30 portion, respectively.

The results of the clone specific PCR, using individual primers specific for the CDR2 of the differing 5′-VH portions and a reverse primer for the common clone specific 3′-CDR3/JH portion, confirmed the presence of revised IgH rearrangements, as found with standard IgH PCR. Each primer pair gave rise to a dominant PCR product, and sequence analysis disclosed concordance with the respective rearrangement found by the standard FR1 PCR.

Sequence analysis of case 2
Sixty three sequences from case 2, obtained from three different independent PCR experiments using separate DNA aliquots, were used to compare the IgH rearrangements. Fifty three of these sequences contained the same CDR3 and JH region, in addition to an identical VH segment portion (fig 3; positions 190–298). The remaining 10 IgH sequences were not similar to one another or to the other sequences in this case. Thus, they arguably reflected the polyclonal background present in this case.
Based on the germline VH segment used, the 53 IgH rearrangements with common CDR3 and JH segments could be divided into three groups (Fig 3). The first group consisted of 49 sequences, which shared the same CDR3, JH region, and VH segment (VH4–59), and varied only at a few nucleotide positions, indicating ongoing somatic mutations. Sequences belonging to this group were present in all three PCR experiments. The second and the third groups were composed of three sequences (groups 2.1–2.3) and one sequence (group 3), respectively. Comparison of the VH segments disclosed that only the 3′ portions (positions 190–298) were identical to the VH4–59 segment of group 1. However, the 5′-VH portions

<table>
<thead>
<tr>
<th>Case 1</th>
<th>VH</th>
<th>NDN</th>
<th>JH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>VH3–07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2</td>
<td>VH3–23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3.1</td>
<td>VH3–30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3.2</td>
<td>VH3–30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Schematic representation of the relation between the sequence groups of case 1. Group 2: consensus of 23 sequences; groups 1, 3.1, and 3.2: one sequence each; vertical strokes represent somatic mutations; bold strokes highlight mutations that are shared between groups; black triangles indicate the probable breakpoints for the hybrid formation.

Figure 3 Comparison of the immunoglobulin heavy chain (IgH) rearrangements of case 2 and alignment to the corresponding germline VH segments. (A) Alignment of the revised 5′ portions of the rearranged VH segments and the corresponding VH germline segments. Differences between the revised VH rearrangements, their most homologous germline segments, and the initial VH4–59 rearrangement, respectively, are shown in capital letters. These results demonstrate that these 5′-VH segments derive from different VH germline segments, as a consequence of the VH receptor revision in this case. (B) Alignment of the common 3′ portions of the rearranged IgH genes to the corresponding VH germline segment (VH4–59) and JH germline segment (JH6b). All subclones of this case display the highest homology to the initial VH germline segment, VH4–59. In addition, there are common and different somatic mutations, indicative of an ongoing somatic mutation process. Taken together, this proves that all subclones of this case carry the same 3′-VH rearrangement, which was not affected by the receptor revision. The black triangle indicates the probable breakpoint for hybrid formation.
Ig receptor revision in MALT lymphomas

Figure 4 Schematic representation of the relation between the sequence groups of case 2. Group 1: consensus of 49 sequences; groups 2.1, 2.2, and 2.3: one sequence each; vertical strokes represent somatic mutations; bold strokes highlight mutations that are shared between groups; the dashed stroke indicates a mutation not present in all sequences of this group; black triangles indicate the probable breakpoints for the hybrid formation.

Unexpectedly, despite the availability of many Ig sequences derived from the clonal Ig rearrangements of a large variety of B cell tumours, no convincing evidence of receptor revision has yet been described for human lymphomas. This raises the question of whether these Ig receptor modifications are absent from malignant lymphomas or are present, but have been overlooked or misinterpreted as artefacts in previous studies.

Here, we describe the presence of receptor revision in two cases of human MALT B cell lymphoma. In both cases, the tumour cell immunoglobulins share the same CDR3 and JH portions but differ in their VH configuration.

“In both cases, the tumour cell immunoglobulins share the same CDR3 and JH portions but differ in their VH configuration”

Discussion

An increasing amount of evidence has accumulated to show that B cells with rearranged Ig genes can modify their Ig receptor specificity by replacing their rearranged VH segments. Depending on the developmental stage of the B cells analysed, different terms and purposes have been assigned to this phenomenon. For immature B cells of the bone marrow it is thought that this mechanism is used to change the reactivity of the autoreactive Ig receptor (a phenomenon known as receptor editing). Whereas for peripheral B cells it has been proposed that this modification—which probably occurs in the germinal centre reaction—is a further way of enhancing the affinity and/or specificity of the Ig receptor (known as receptor revision), in addition to the elimination of autoreactive or unproductive antibodies.

The revised receptors found in mature B cells consist mainly of so-called “hybrid” VH segments, which are composed of parts derived from two different VH segments. It was proposed that cryptic recombination signal sites, present in the germline genes, enable the recombination between a recipient and a donor VH segment, leading to a partial VH replacement in an existing, functional VDJ rearrangement. The detection of revised Ig sequences that were clonally related, as demonstrated by shared somatic mutations in the common VH recipient part, showed that the recombination events took place in the germinal centre during ongoing somatic hypermutation. Because this process serves to enhance antibody affinity, this finding indicates that receptor revision might be a further mechanism, in addition to somatic mutation, that shapes the antigen selected B cell repertoire.

“In both cases, the tumour cell immunoglobulins share the same CDR3 and JH portions but differ in their VH configuration”

Unexpectedly, despite the availability of many Ig sequences derived from the clonal Ig rearrangements of a large variety of B cell tumours, no convincing evidence of receptor revision has yet been described for human lymphomas. This raises the question of whether these Ig receptor modifications are absent from malignant lymphomas or are present, but have been overlooked or misinterpreted as artefacts in previous studies.

Here, we describe the presence of receptor revision in two cases of human MALT B cell lymphoma. In both cases, the tumour cell immunoglobulins share the same CDR3 and JH portions but differ in their VH configuration.

“In both cases, the tumour cell immunoglobulins share the same CDR3 and JH portions but differ in their VH configuration”

Discussion

An increasing amount of evidence has accumulated to show that B cells with rearranged Ig genes can modify their Ig receptor specificity by replacing their rearranged VH segments. Depending on the developmental stage of the B cells analysed, different terms and purposes have been assigned to this phenomenon. For immature B cells of the bone marrow it is thought that this mechanism is used to change the reactivity of the autoreactive Ig receptor (a phenomenon known as receptor editing). whereas for peripheral B cells it has been proposed that this modification—which probably occurs in the germinal centre reaction—is a further way of enhancing the affinity and/or specificity of the Ig receptor (known as receptor revision), in addition to the elimination of autoreactive or unproductive antibodies.

The revised receptors found in mature B cells consist mainly of so-called “hybrid” VH segments, which are composed of parts derived from two different VH segments. It was proposed that cryptic recombination signal sites, present in the germline genes, enable the recombination between a recipient and a donor VH segment, leading to a partial VH replacement in an existing, functional VDJ rearrangement. The detection of revised Ig sequences that were clonally related, as demonstrated by shared somatic mutations in the common VH recipient part, showed that the recombination events took place in the germinal centre during ongoing somatic hypermutation. Because this process serves to enhance antibody affinity, this finding indicates that receptor revision might be a further mechanism, in addition to somatic mutation, that shapes the antigen selected B cell repertoire.

“In both cases, the tumour cell immunoglobulins share the same CDR3 and JH portions but differ in their VH configuration”

Figure 4 Schematic representation of the relation between the sequence groups of case 2. Group 1: consensus of 49 sequences; groups 2.1, 2.2, and 2.3: one sequence each; vertical strokes represent somatic mutations; bold strokes highlight mutations that are shared between groups; the dashed stroke indicates a mutation not present in all sequences of this group; black triangles indicate the probable breakpoints for the hybrid formation.
The observed VH replacements might have been mediated by recombination signal sites that were present near the 3′ ends of the VH sequences (figs 1 and 3). In case 2, the cryptic heptamer beginning at C207 was a possible junction between the VH4–59 recipient and the donor VH genes. For case 1, the breakpoint would probably have been at C224, after the last region of sequence homology to the respective donor VH germline genes, but before the common 3′-VH region. However, a heptamer-like sequence can only be detected before (C204) and after (C233) this point.

In early PCR studies for the amplification of antigen receptor rearrangements, the generation of chimaeric molecules as a result of PCR recombination events has been described repeatedly. However, since then PCR conditions have improved considerably, particularly by the introduction of new types of polymerases and newly designed primer systems. The Ig PCR system used in our study is based on up to date polymerases (TaqGold) and on VH family specific primers, which have been approved by their application to several thousand lymphoproliferative disorders, including extensive single cell studies. In none of these cases have artificial chimaeric PCR products been produced. Furthermore, all experiments were performed three times, and concordant results were produced. The derivation of our Ig sequences from individual rearrangements is further underscored by detailed sequence analysis of the PCR products. All rearrangements are in frame and, even more striking, there are common and different somatic mutations in the 3′-VH regions of the VH sequences. These mutation patterns, which fulfill all criteria for ongoing somatic mutations, cannot be generated by coincidental PCR recombinations, but reflect the presence of different individual B cell clones in our cases.

“Our findings of receptor revision in mucosa associated lymphoid tissue lymphomas demonstrate that this process of rearranging is not only active in physiological germinal centre B cells but also in lymphomas with ongoing immunoglobulin mutations”.

To confirm the presence of the revised Ig rearrangements by an independent approach we performed additional PCRs with forward primers designed for the CDR2 of each of the four rearrangements of case 1 (group 1, VH3–07; group 2, VH3–23; group 3.1 and 3.2, VH3–30). The reverse primer was located in the common clone specific CDR3 portion. Amplification was carried out separately for each primer pair and PCR products were obtained with all four primer combinations. Sequence analysis of these PCR products demonstrated that the sequences generated by the clone specific PCR matched the corresponding rearrangements amplified by the previous FR1 PCR (data not shown). This unequivocally confirms the existence of revised IgH rearrangements in the tumour cells of case 1. Unfortunately, there was no more suitable material left for the re-analysis of case 2.

Our findings of receptor revision in MALT lymphomas demonstrate that this process of rearranging is not only active in physiological germinal centre B cells but also in lymphomas with ongoing Ig mutations. This might have implications for the interpretation of clonality studies based on Ig rearrangements because the expected clonal appearance might be confused by additional dominant B cell clones, leading to the interpretation of an oligoclonal reactive B cell expansion instead of a clonal malignant B cell population. Finally, the presence of antigen receptor revision might interfere with anti-idiotype vaccination strategies because the tumour cell clone might possess more than one type of Ig receptor.

ACKNOWLEDGEMENT
This study was supported by the Deutsche Krebshilfe.
Take home messages

- VH replacement was found in the two mucosa associated lymphoid tissue lymphomas studied, and the mutation pattern was in line with the hypothesis that in mature B cells these replacements are associated with active somatic hypermutation.
- Thus, VH replacements appear to be a further mechanism for reshaping antigen affinity and specificity.
- These receptor modifications are not restricted to normal and reactive germinal centre B cells, but can occur in close association with the development of malignant B cell lymphomas.
- This might have implications for the interpretation of clonality studies based on immunoglobulin rearrangements.

..............

Authors’ affiliations

D Lenze, I Anagnostopoulos, H Stein, M Hummel, Institute of Pathology, University Medical Center Benjamin Franklin, The Free University of Berlin, 12200 Berlin, Germany
A Greiner, C Knörr, Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany

REFERENCES

Receptor revision of immunoglobulin heavy chain genes in human MALT lymphomas

D Lenze, A Greiner, C Knörr, I Anagnostopoulos, H Stein and M Hummel

Mol Path 2003 56: 249-255
doi: 10.1136/mp.56.5.249

Updated information and services can be found at:
http://mp.bmj.com/content/56/5/249

These include:

References
This article cites 33 articles, 14 of which you can access for free at:
http://mp.bmj.com/content/56/5/249#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/