Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microsatellite evolution — evidence for directionality and variation in rate between species

Abstract

Microsatellite DMA sequences are rapidly becoming the dominant source of nuclear genetic markers for a wide range of applications, from genome mapping to forensic testing to population studies. If misinterpretation is to be avoided, it is vital that we understand fully the way in which microsatellite sequences evolve. We have therefore compared allele length distributions for 42 microsatellites in humans with their homologues in a range of related primates. We find a highly significant trend for the loci to be longer in humans, showing that microsatellites can evolve directionally and at different rates in closely related species.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Tautz, D. & Schlotterer, C. Simple sequences. Curr. Opin. Genet. Devel. 4, 832–837 (1994).

    Article  CAS  Google Scholar 

  2. Willems, P.J. Dynamic mutations hit double figures. Nature Genet. 8, 213–215 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Rubinsztein, D.C. et al. Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nature Genet. 7, 525–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Bowcock, A.M., Ruiz-Linares, A., Tonfohrde, J., Minch, E., Kidd, J.R. & Cavaili-Sforza, L.L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 368, 455–457 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Deka, R. et al. Conservation of human chromosome 13 polymorphic microsatellite (CA)n repeats in chimpanzees. Genomics 22, 226–230 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Beckmann, J.S. & Weber, J.L. Survey of human and rat microsatellites. Genomics 12, 627–631 (1992).

    Article  CAS  Google Scholar 

  7. Weber, J. & Wong, C. Mutation of short tandem repeats. Hum. molec. Genet. 8, 1123–1128 (1993).

    Article  Google Scholar 

  8. Banchs, I., Bosch, A., Guimera, J., Lazaro, C., Puig, A. & Estivill, X. New alleles at microsatellite loci in CEPH families mainly arise from somatic mutations in the lymphoblastoid cell lines. Hum. Mut. 3, 365–372 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Jeffreys, A.J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Gray, I.C. & Jeffreys, A.J. Evolutionary transience of hypervariable minisatellites in man and the primates. Proc. R. Soc. Lond. B 243, 241–253 (1991).

    Article  CAS  Google Scholar 

  11. Valdes, A.M., Slatkin, M. & Freimer, N.B. Allele frequencies at microsatellite lociithe stepwise mutation model revisited. Genetics 133, 737–749 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dover, G.A. Evolution of genetic redundancy for advanced players. Curr. Opin. Genet. Devel. 3, 902–910 (1993).

    Article  CAS  Google Scholar 

  13. Richards, R.I. & Sutherland, G.R. Simple repeat DNA is not replicated simply. Nature Genet. 6, 114–116 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Buard, J. & Vergnaud, G. Complex recombination events at the hypermutable minisatellite CEB1 (D2S90). EMBO J. 13, 3203–3210 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Napier, J.R. & Napier, P.M. A Handbook of Living Primates (Academic Press, London, 1967).

  16. Duyao, M. et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genet. 4, 387–392 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Andrew, S.E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genet. 4, 398–403 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Snell, G. et al. Relationship between trinucleotide repeat expansions and phenotypic variation in Huntington's disease. Nature Genet. 4, 393–397 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Jodice, C. et al. Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia I. Am. J. hum. Genet. 54, 959–965 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brunner, H.G. et al. Influence of sex of the transmitting parent as well as of parental allele size on the CTG expansion in myotonic dystrophy. Am. J. hum. Genet. 53, 1016–1023 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Farrer, L.A., Cupples, L.A., Kiely, D.K., Conneally, P.M. & Myers, R.M. Inverse relationship between age of onset of Huntington disease and paternal age suggests involvement of genetic imprinting. Am. J. hum. Genet. 50, 528–535 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Reyniers, E. et al. The full mutation in the FMR-1 gene of male fragile X patients is absent in their sperm. Nature Genet. 4, 143–146 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Jansen, G. et al. Gonosomal mosaicism in myotonic dystrophy patients: Involvement of mitotic events in (CTG)n repeat variation and selection against extreme expansion in sperm. Am. J. hum. Genet. 54, 575–585 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–12 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Rubinsztein, D.C. et al. B37 repeats are normal in most schizophrenic patients. Brit. J. Psych. 164, 851–852 (1994).

    Article  CAS  Google Scholar 

  26. Slierendregt, B.L. et al. Major histocompatibility class II haplotypes in a breeding colony of chimpanzees (Pan troglodytes). Tissue Ant. 42, 55–61 (1993).

    CAS  Google Scholar 

  27. Li, S.H., Mclnnis, M., Margolis, R.L., Antonarakis, S. & Ross, C.A. Novel triplet repeat containing genes in human brain: Cloning, expression, and length polymorphism. Genomics 16, 572–579 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Gyapay, G. et al. The 1993–94 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Kwiatkowski, D.J. et al. Construction of a GT polymorphism map of human 9q. Genomics. 12, 220–240 (1992).

    Article  Google Scholar 

  30. Jones, M.H., Yamakawa, K. & Nakamura, Y. Isolation and characterisation of 19 dinucleotide repeat polymorphisms on chromosome 3p. Hum. molec. Genet. 1, 131–133 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Paschen, W., Blackstone, C.D., Huganir, R.L. & Ross, C.A., GluR 6 Kainate receptor (GRIK2): Molecular cloning, expression, polymorphism, and chromosomal assignment. Genomics. 20, 435–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Oudet, C. et al. Characterisation of a highly polymorphic microsatellite at the DXS207 locus: confirmation of very close linkage to the retinoschisis gene. J. med. Genet. 30, 300–303 (1992).

    Article  Google Scholar 

  33. Coleman, M.P. et al. Genetic and physical mapping around the properidin P gene. Genomics. 11, 991–996 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Porter, C.J., Nahmias, J., Wolfe, J. & Craig, I.W. Dinucleotide repeat polymorphism atthe human dopamine (3-hydroxylase (DBH) locus. Nucl. Acids Res. 20, 1429 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stanier, P., Newton, R., Forbes, S.A., Ivens, A. & Moore, G.E. Polymorphic dinucleotide at the DXS3 locus. Nucl. Acids Res. 19, 4793 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weber, J.L., Kwitek, A.E., May, P.E., Polymeropoulos, M.H. & Ledbetter, S. Dinucleotide repeat polymorphisms atthe DXS453, DXS454 and DXS458 loci. Nucl. Acids Res. 18, 4037 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hugnot, J.P., Recan, D., Jeanpierre, M., Kaplan, J.C. & Tolun, A. A highly informative CACA repeat polymorphism upstream of the human dystrophin gene. Nucl. Acids Res. 19, 3159 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clemens, P.R. et al. Carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophyfamilies, using dinucleotide repeat polymorphisms. Am. J. hum. Genet. 49, 951–960 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Roux, A.-F., Yuan, C.C., Rommens, J.M. & Musarella, M.A. Dinucleotide repeat polymorphism near the RP3 locus in Xp21 (DXS1110). Hum. molec. Genet. 2, 821 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Jansen, G. et al. Physical and genetic characterisation of the distal segment of the myotonic dystrophy area on 19q. Genomics. 13, 509–517 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Moore, B.J., Kwan, S.P. & Bech-Hansen, N.T. A polymorphic dinucleotide repeat at the DXS7 locus. Nucl. Acids Res. 20, 929 (1991).

    Article  Google Scholar 

  42. Fu, Y.-H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  43. Hardwick, L.J., Brown, J. & Wright, A.F. An SIR polymorphism at the CYBB locus. Hum. Molec. Genet. 2, 1755 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Knight, S.J.L. et al. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74, 127–134 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Orr, H. et al. Expansion of an unstable trinucleotide (CAG) repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Tsai, Y.C. et al. Mosaicism in human epithelium: macroscopic monoclonal patches cover the urothelium. J. Urol. 153, 1697–1700 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinsztein, D., Amos, W., Leggo, J. et al. Microsatellite evolution — evidence for directionality and variation in rate between species. Nat Genet 10, 337–343 (1995). https://doi.org/10.1038/ng0795-337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0795-337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing