Skip to main content
Log in

Molecular evolution inDrosophila and the higher diptera

II. A time scale for fly evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

In this paper, we examine first the steadiness of the rate of evolutionary change in a larval hemolymph protein, LHP, in numerousDrosophila species. We estimated amino acid sequence divergence from immunological distances measured with the quantitative microcomplement fixation technique. Using tests not depending on knowledge of absolute times of divergence, we estimated the variance of the rate of evolutionary change to be at least 4 times as large as that for a process resembling radioactive decay. Thus, the rate of evolution of this protein is as uniform as that of vertebrate proteins. Our analysis indicates no acceleration of protein evolution in the lineages leading to Hawaiian drosophilines. Second, we give an explicit description of a procedure for calculating the absolute value of the mean rate of evolutionary change in this protein. This procedure is suggested for general use in calculating absolute rates of molecular evolution. The mean rate of evolution of LHP is about 1.2 immunological distance units per million years, which probably coreesponds to a unit evolutionary period of 4 million years; LHP thus evolves at a rate comparable to that of mammalian hemoglobins. Finally, we utilize the calibrated rate of LHP evolution to derive a time scale of evolution in the Drosophilidae and higher Diptera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akam ME, Roberts DB, Wolfe JE (1978a)Drosophila hemolymph proteins: purification, characterization and genetic mapping of larval serum protein 2 inD. melanogaster. Biochem Genet 16:101–119

    PubMed  Google Scholar 

  • Akam ME, Roberts DB, Richards GP, Ashburner M (1978b)Drosophila: the genetics of two major larval proteins. Cell 13: 215–225

    PubMed  Google Scholar 

  • Alvarez LW (1983) Experimental evidence that an asteroid impact led to the extinction of many species 65 million years ago. Proc Natl Acad Sci USA 80:627–642

    Google Scholar 

  • Ayala FJ (1975) Genetic differentiation during the speciation process. Evol Biol 8:1–78

    Google Scholar 

  • Benjamin DC, Berzofsky JA, East IJ, Gurd FRN, Hannum C, Leach SJ, Margoliash E, Michael JG, Miller A, Prager EM, Reichlin M, Sercarz EE, Smith-Gill SJ, Todd PE, Wilson AC (1984) The antigenic structure of proteins: a reappraisal. Annu Rev Immunol 2:67–101

    PubMed  Google Scholar 

  • Beverley SM (1977) Purification, characterization and immunological cross-reactivity of a hemolymph protein fromDrosophila larvae. Fed Proc 36:927

    Google Scholar 

  • Beverley SM (1979) Molecular evolution inDrosophila. Ph.D. thesis, University of California, Berkeley

    Google Scholar 

  • Beverley SM (1980) A molecular view of the age and origin of the HawaiianDrosophila. In: Abstracts of the Second International Congress of Systematic and Evolutionary Biology, Vancouver

  • Beverley SM, Wilson AC (1982) Molecular evolution inDrosophila and higher Diptera. I. micro-complement fixation studies of a larval hemolymph protein. J Mol Evol 18:251–264

    PubMed  Google Scholar 

  • Bisbee, A, Baker MA, Wilson AC, Hadji-Azimi T, Fischberg M (1977) Albumin phylogeny for clawed frogs (Xenopus). Science 195:785–787

    PubMed  Google Scholar 

  • Bock I, Wheeler MR (1972) TheDrosophila melanogaster species group. In: Wheeler MR (ed) Studies in genetics, vol. 7. University of Texas, Austin, pp 1–102

    Google Scholar 

  • Borror DJ, DeLong DM, Triplehorn CA (1976) An introduction to the study of insects. Holt, Rinehart & Winston, New York

    Google Scholar 

  • Bruce EJ, Ayala FJ (1979) Phylogenetic relationships between man and the apes: electrophoretic evidence. Evolution 33: 1040–1056

    Google Scholar 

  • Carlson SS (1975) The evolution of mouse and rat cytochromesc. Ph.D. thesis, University of California, Berkeley

    Google Scholar 

  • Carlson SS, Wilson AC, Maxson RD (1978) Do albumin clocks run on time? Science 200:1183–1185

    Google Scholar 

  • Carson HL (1976) Inference of the time of divergence of someDrosophila species. Nature 259:395–396

    PubMed  Google Scholar 

  • Carson HL, Kaneshiro KY (1976)Drosophila of Hawaii: systematics and ecological genetics. Annu Rev Ecol Syst 7:311–345

    Google Scholar 

  • Carson HL, Hardy DE, Spieth HT, Stone WS (1970) The evolutionary biology of the Hawaiian Drosophilidae. In: Hecht MK, Steere WC (eds) Essays on evolution and genetics in honor of Theodosius Dobzhansky. Appleton-Century-Crofts, New York, pp 437–543

    Google Scholar 

  • Champion AB, Soderberg KL, Wilson AC, Ambler RP (1975) Immunological comparison of azurins of known amino acid sequence: dependence of cross-reactivity upon sequence resemblance. J Mol Evol 5:291–305

    PubMed  Google Scholar 

  • Champion AB, Barrett EL, Palleroni NJ, Soderberg KL, Kunisawa R, Contopoulou R, Wilson AC, Doudoroff M (1980) Evolution inPseudomonas fluorescens. J Gen Microbiol 120: 485–511

    PubMed  Google Scholar 

  • Cohn VH, Thompson MA, Moore GP (1984) Nucleotide sequence comparison of the Adh gene in three Drosophilids. J Mol Evol 20:31–37

    PubMed  Google Scholar 

  • Collier GE, MacIntyre RJ (1977) Micro-complement fixation studies on the evolution of alpha-glycerophosphate dehydrogenase within the genusDrosophila. Proc Natl Acad Sci USA 74:684–688

    PubMed  Google Scholar 

  • Cracraft J (1974) Continental drift, paleoclimatology, and the evolution and biogeography of birds. J Zool 169:455–545

    Google Scholar 

  • Dalrymple GB, Silver EA (1973) Origin of the Hawaiian islands. Am Sci 61:294–308

    Google Scholar 

  • Dickerson RE (1971) The structure of cytochrome c and the rate of molecular evolution. J Mol Evol 1:26–45

    PubMed  Google Scholar 

  • Dobzhansky T, Ayala FJ, Stebbins GL, Valentine JW (1977) Evolution. WH Freeman, San Francisco, pp 308–313

    Google Scholar 

  • Fitch WM (1980) Estimating the total number of nucleotide substitutions since the common ancestor of a pair of homologous genes: comparison of several methods and three betahemoglobin messenger RNAs. J Mol Evol 16:153–204

    PubMed  Google Scholar 

  • Fitch WM, Margoliash E (1970) The usefulness of amino acid and nucleotide sequences in evolutionary studies. Evol Biol 4:67–109

    Google Scholar 

  • Fitch WM, Markowitz E (1970) An improved method for determining codon variability and its application to the rate of fixation of mutations in evolution. Biochem Genet 4:579–593

    PubMed  Google Scholar 

  • Gillespie JH, Langley CH (1979) Are evolutionary rates really variable? J Mol Evol 13:27–34

    PubMed  Google Scholar 

  • Gribbin JR, Cherfas J (1982) The monkey puzzle. Pantheon Books, New York, p 127

    Google Scholar 

  • Harrison RA (1959) Acalypterate Diptera of New Zealand. NZ Dept Sci Ind Res Bull 128:1–382

    Google Scholar 

  • Hennig W (1960) Die Dipteren-Fauna von Neuseeland als systematisches und tiergeographisches Problem. Beitr Entomol 10:221–329

    Google Scholar 

  • Hennig W (1973) Diptera. In Kukenthal W (ed): Handbuch der Zoologie, IV: Arthropoda. de Gruyter, New York, pp 1–377

    Google Scholar 

  • Hubby JL (1963) Protein differences inDrosophila, I:Drosophila melanogaster. Genetics 48:871–879

    Google Scholar 

  • Hunt JA, Hall TJ, Britten RJ (1981) Evolutionary distances in HawaiianDrosophila measured by DNA reassociation. J Mol Evol 17:365–367

    Google Scholar 

  • Ibrahimi IM, Prager EM, White TJ, Wilson AC (1979) Amino acid sequence of California quail lysozyme: effects of evolutionary substitutions on the antigenic structure of lysozyme. Biochemistry 18:2736–2744

    PubMed  Google Scholar 

  • Kimura M (1979) Model of effectively neutral mutations in which selective constraint is incorporated. Proc Natl Acad Sci USA 76:3440–3444

    Google Scholar 

  • Kumura M, Ohta T (1971) On the rate of molecular evolution. J Mol Evol 1:1–17

    PubMed  Google Scholar 

  • King M-C, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116

    PubMed  Google Scholar 

  • Laird CD, McCarthy BJ (1968) Magnitude of interspecific nucleotide sequence variability inDrosophila. Genetics 60:303–322

    PubMed  Google Scholar 

  • Langley CH, Fitch WM (1974) An examination of the constancy of the rate of molecular evolution. J Mol Evol 3:161–167

    PubMed  Google Scholar 

  • MacDonald GA, Abbott AT (1970) Volcanoes in the sea. In: The geology of Hawaii. University of Hawaii Press, Honolulu, pp 3–7; 263–285

    Google Scholar 

  • Maxson LR, Wilson AC (1975) Relation between albumin evolution and organismal evolution in treefrogs (Hylidae). Syst Zool 24:1–15

    Google Scholar 

  • McAlpine JF (1970) First record of calypterate flies in the Mesozoic era. Entomol 102:342–346

    Google Scholar 

  • McAlpine JF (1973) A fossil ironomyiid fly from Canadian amber. Can Entomol 105:105–111

    Google Scholar 

  • McAlpine JF, Martin JEH (1966) Systematics of Sciadoceridae and relations with descriptions of two new genera from Ca-nadian amber and erection of family Ironomyiidae. Can Entomol 99:225–236

    Google Scholar 

  • Munn EA, Greville GD (1969) The soluble proteins of developingCalliphora erythrocephala, particularly calliphorin, and similar proteins in other insects. J Insect Physiol 15:1935–1950

    Google Scholar 

  • Nei M (1971) Interspecific gene differences and evolutionary time estimated from electrophoretic data on protein identity. Am Nat 105:385–398

    Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North-Holland, Amsterdam

    Google Scholar 

  • Nei M (1977) Standard error of immunological dating of evolutionary time. J Mol Evol 9:203–211

    PubMed  Google Scholar 

  • Nei M, Graur D (1984) Extent of protein polymorphism and the neutral mutation theory. Evol Biol 17 (in press)

  • Nozawa K, Shotake T, Kawamoto Y, Tanabe Y (1982) Electrophoretically estimated genetic distance and divergence time between chimpanzee and man. Primates 23:432–443

    Google Scholar 

  • O'Brien SJ, MacIntyre RJ (1969) An analysis of gene-enzyme variability in natural populations ofDrosophila melanogaster andD. simulans. Am Nat 103:97–103

    Google Scholar 

  • Ohta T (1976) Role of very slightly deleterious mutations in molecular evolution. Theor Popul Biol 10:254–275

    PubMed  Google Scholar 

  • Patrusky B (1979) Molecular evolution: a quantifiable contribution. Mosaic 10:12–22

    Google Scholar 

  • Patterson JT, Stone WS (1952) Evolution in the genusDrosophila. Macmillan, New York

    Google Scholar 

  • Prager CM, Wilson AC (1971) The dependence of immunological cross-reactivity upon sequence resemblance among lysozymes. I: Micro-complement fixation studies. J Biol Chem 246:5978–5989

    PubMed  Google Scholar 

  • Prager EM, Wilson AC (1976) Congruency of phylogenies derived from different proteins. J Mol Evol 9:45–57

    PubMed  Google Scholar 

  • Prager EM, Fowler DP, Wilson AC (1976) Rates of evolution in conifers (Pinaceae). Evolution 30:637–649

    Google Scholar 

  • Roberts DB, Wolfe J, Akam M (1977) The developmental profile of two major haemolymph proteins fromDrosophila melanogaster. J Insect Physiol 23:871–878

    PubMed  Google Scholar 

  • Rohdendorf B (1974) The historical development of Diptera. University of Alberta Press, Edmonton, Canada

    Google Scholar 

  • Sarich WM (1977) Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature 265:24–28

    PubMed  Google Scholar 

  • Sarich VM, Cronin JE (1976) Molecular systematics of the primates. In: Goodman M, Tashian R (eds) Molecular anthropology. Plenum Press, New York, pp 141–170

    Google Scholar 

  • Sarich VM, Cronin JE (1980) South American mammal molecular systematics, evolutionary clocks, and continental drift. In: Ciochon RL, Chiarelli AB (eds) Evolutionary biology of the New World monkeys and continental drift. Plenum Press, New York, pp 399–421

    Google Scholar 

  • Sarich VM, Wilson AC (1966) Quantitative immunochemistry and the evolution of primate albumins: microcomplement fixation. Science 154:1563–1566

    PubMed  Google Scholar 

  • Sarich VM, Wilson AC (1967) Rates of albumin evolution in primates. Proc Natl Acad Sci USA 58:142–148

    PubMed  Google Scholar 

  • Sarich VM, Wilson AC (1973) Generation time and genomic evolution in primates. Science 179:1144–1147

    PubMed  Google Scholar 

  • Sneath PHA (1980) The estimation of differences in protein evolution rates. Proc Geol Assoc 91:71–79

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman, San Francisco

    Google Scholar 

  • Tarling, DH (1980) The geological evolution of South America with special reference to the last 200 million years. In: Ciochon RL, Charelli AB (eds) Evolutionary biology of the New World monkeys and continental drift. Plenum Press, New York, pp 1–41

    Google Scholar 

  • Throckmorton LH (1975) The phylogeny, ecology and geography ofDrosophila. In: King RC (ed) Handbook of genetics, vol 3. Plenum Press, New York, pp 421–469

    Google Scholar 

  • Uzzell T, Corbin KW (1971) Fitting discrete probability distributions to evolutionary events. Science 172:1089–1096

    PubMed  Google Scholar 

  • Wallace DG, Boulter D (1976) Immunological comparisons of higher plant plastocyanins. Phytochemistry 15:137–141

    Google Scholar 

  • Wallace DG, King M-C, Wilson AC (1973) Albumin differences among ranid frogs: taxonomic and phylogenetic implications. Syst Zool 22:1–13

    Google Scholar 

  • Wheeler MR (1963) A note on some fossil Drosophilidae from the amber of Chiapas, Mexico. J Paleontol 37:123–124

    Google Scholar 

  • Wheeler MR (1981) The Drosophilidae: a taxonomic overview. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics of biology ofDrosophila, vol 3a. Academic Press, New York, pp 1–97

    Google Scholar 

  • White TJ, Wilson AC (1978) Molecular anthropology. Evolution 32:693–694

    Google Scholar 

  • Wilson AC (1975) Evolutionary importance of gene regulation. In: Stadler Symposium, vol. 7. University of Missouri Agricultural Experiment Station, Columbia, Missouri, p. 117–132

    Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    PubMed  Google Scholar 

  • Yang SY, Soule M, Gorman GC (1974)Anolis lizards of the Eastern Caribbean: a case study in evolution, I. Genetic relationships, phylogeny and colonization sequence of theroquet group. Syst Zool 23:387–399

    Google Scholar 

  • Zwiebel LJ, Cohn VH, Wright DR, Moore GP (1982) Evolution of single-copy DNA and the ADH gene in seven drosophilids. J Mol Evol 19:62–71

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beverley, S.M., Wilson, A.C. Molecular evolution inDrosophila and the higher diptera. J Mol Evol 21, 1–13 (1984). https://doi.org/10.1007/BF02100622

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100622

Key words

Navigation