Skip to main content
Log in

Ultrastructural evidence for the lack of co-transport of B-50/GAP-43 and calmodulin in myelinated axons of the regenerating rat sciatic nerve

  • Published:
Journal of Neurocytology

Summary

Following peripheral nerve injury, neurons respond with synthesis of proteins required for axonal regeneration. Newly synthesized membrane proteins, like B-50/GAP-43, are transported with the fast component of anterograde axonal transport. Structural proteins and calmodulin are transported by the slow component. Since B-50/GAP-43 can bind calmodulin, it has been hypothesised that B-50/GAP-43 may act as a carrier for fast anterograde transport of calmodulin, so that both proteins are delivered rapidly to the distally outgrowing axons (‘the fast carrier hypothesis’). We have investigated whether this hypothesis is valid in myelinated axons of the regenerating rat sciatic nerve. Seven days after crush, the nerve was ligated to accumulate fast transported proteins. Nerve pieces were dissected proximal to the ligation and processed for immunofluorescence and quantitative electron microscopy by postembedding single and double immunogold labelling. By light microscopy, we observed a qualitative increase in B-50/GAP-43 immunofluorescence in the axonal element immediately proximal to the nerve ligation (termed ‘accumulated’) compared to an upstream site (termed ‘regenerating’) closer to the cell body. The immunofluorescence for calmodulin appeared to be the same at both sites. Using electron microscopy, we observed that organelles had collected at the ‘accumulated’ site, moreover the density of B-50/GAP-43 immunolabelling was significantly increased compared to the ‘regenerating’ site, where the axoplasmic structure was undisturbed. The increase in B-50/GAP-43 immunolabelling was largely associated with vesicles. The density of calmodulin immunolabelling was similar at both sites. Approximately 25% of the total B-50/GAP-43 was associated with vesicles of which only 15% also contained labelling for calmodulin. Thus, ligation of the nerve resulted in accumulation of vesicles, including those carrying B-50/GAP-43, largely without calmodulin. Therefore, contrary to ‘the fast carrier hypothesis’, the bulk of calmodulin is not co-transported with B-50/GAP-43 in myelinated axons of the sciatic nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander, K. A., Cimler, B. M., Meier, K. E. &Storm, D. R. (1987) Regulation of calmodulin binding to P-57. A neurospecific calmodulin binding protein.Journal of Biological Chemistry 262, 6108–13.

    Google Scholar 

  • Alexander, K. A., Wakim, B. T., Doyle, G. S., Walsh, K. A. &Storm, D. R. (1988) Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein.Journal of Biological Chemistry 263, 7544–79.

    Google Scholar 

  • Andreasen, T. J., Luetje, C. W., Heideman, W. &Storm, D. R. (1988) Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes.Biochemistry 22, 4615–18.

    Google Scholar 

  • Benowitz, L. I. andLewis, E. R. (1983) Increased transport of 44000 to 49000 dalton acidic proteins during regeneration of the goldfish optic nerve: a two-dimensial gel analysis.Journal of Neuroscience 3, 2153–63.

    Google Scholar 

  • Bisby, M. A. (1988) Dependence of GAP43 (B50, F1) transport on axonal regeneration in rat dorsal root ganglion neurons.Brain Research 458, 157–61.

    Google Scholar 

  • Bisby, M. A. &Tetzlaff, W. (1992) Changes in cytoskeletal protein synthesis following axon injury and during axon regeneration.Molecular Neurobiology 6, 107–23.

    Google Scholar 

  • Brady, S. T., Tytell, M., Heriot, K. &Lasek, R. J. (1981). Axonal transport of calmodulin: a physiological approach to identification of long-term associations between proteins.Journal of Cell Biology 89, 607–14.

    Google Scholar 

  • Chong, M. S., Fitzgerald, M., Winter, J., Hutsai, M., Emson, P. C., Wiese, U. H. &Woolf, C. J. (1992) GAP-43 messenger RNA in rat spinal cord and dorsal root ganglia neurons — developmental changes and re-expression following peripheral nerve injury.European Journal of Neuroscience 4, 883–95.

    Google Scholar 

  • Dahlström, A. B. andBooj, S. (1988) Rapid axonal transport as a chromatographic process: the use of immunocytochemistry of ligated nerves to investigate the biochemistry of anterogradely versus retrogradely transported organelles.Cell Motility and the Cytoskeleton 10, 309–20.

    Google Scholar 

  • Danscher, G. (1981) Localization of gold in biological tissue: a photochemical method for light and electron microscopy.Histochemistry 71, 81–8.

    Google Scholar 

  • De Graan, P. N. E., Oestreicher, A. B., De Wit, M., Kroef, M., Schrama, L. H. &Gispen, W. H. (1990) Evidence for the binding of calmodulin to endogenous B-50 (GAP-43) in native synaptosomal plasma membranes.Journal of Neurochemistry 55, 2139–41.

    Google Scholar 

  • De Koning, P., Brakkee, J. H. &Gispen, W. H. (1986) Methods for producing a reproducible crush in the sciatic and tibial nerve of the rat and rapid and precise testing of return of sensory function.Journal of the Neurological Sciences 74, 237–46.

    Google Scholar 

  • Dulhunty, A. F., Junankar, P. R. &Stanhope, C. (1993) Immunogold labeling of calcium ATPase in sarcoplasmic reticulum of skeletal muscle — use of 1-nm, 5-nm, and 10- nm gold.Journal of Histochemistry and Cytochemistry 41, 1459–66.

    Google Scholar 

  • Ekstrom, P. A., Wallin, M., Kanje, M. &Edstrom, A. (1991) A calmodulin inhibitor with high specificity, compound 48/80, inhibits axonal transport in frog nerves without disruption of axonal microtubules.Acta Physiologica Scandinavia 142, 181–9.

    Google Scholar 

  • Estep, R. P., Alexander, K. A. &Storm, D. R. (1990) Regulation of free calmodulin levels in neurons by neuromodulin: relationship to neuronal growth and regeneration.Current Topics In Cell Regulation 31, 161–80.

    Google Scholar 

  • Fawcett, J. W. &Keynes, R. J. (1990) Peripheral nerve regeneration.Annual Reviews in Neuroscience 13, 43–60.

    Google Scholar 

  • Gispen, W. H., Nielander, H. B., De Graan, P. N. E., Oestreicher, A. B., Schrama, L. H. &Schotman, P. (1992) Role of the growth-associated protein B-50/GAP-43 in neuronal plasticity.Molecular Neurobiology 5, 61–85.

    Google Scholar 

  • Grafstein, B. &Forman, D. S. (1980) Intracellular transport in neurons.Physiological Reviews 60, 1167–283.

    Google Scholar 

  • Hall, S. M., Kent, A. P., Curtis, R. &Robertson, D. (1992) Electron microscopic immunocytochemistry of GAP-43 within proximal and chronically denervated distal stumps of transected peripheral nerve.Journal of Neurocytology 21, 820–31.

    Google Scholar 

  • Hens, J. J. H., Oestreicher, A. B., De Wit, M., Marquart, A., Gispen, W. H. &De Graan, P. N. E. (1996) Evidence for a role of calmodulin in calcium-induced noradrenaline release from permeated synaptosomes: effects of calmodulin antibodies and antagonists.Journal of Neurochemistry 66, 1933–42.

    Google Scholar 

  • Hirokawa, N., Sato-Yoshitake, R., Kobayashi, N., Pfister, K. K. &Bloom, G. S. (1991) Kinesin associates with anterogradely transported membranous organellesin vivo.Journal of Cell Biology 114, 295–302.

    Google Scholar 

  • Hoffman, P. N. (1989) Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta-tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons.Journal of Neuroscience 9, 893–97.

    Google Scholar 

  • Hoffman, P. N. &Cleveland, D. W. (1988) Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific beta-tubulin isotype.Proceedings of the National Academy of Science (USA) 85, 4530–43.

    Google Scholar 

  • Jacob, J. M. &McQuarrie, I. G. (1991) Axotomy accelerates slow component b of axonal transport.Journal of Neurobiology 22, 570–82.

    Google Scholar 

  • Jian, X., Hidaka, H. &Schmidt, J. T. (1994) Kinase requirement for retinal growth cone motility.Journal of Neurobiology 25, 1310–28.

    Google Scholar 

  • Kalil, K. &Skene, J. H. P. (1986) Elevated synthesis of an axonally transported protein correlates with axon out-growth in normal and injured pyramidal tracts.Journal of Neuroscience 6, 2563–70.

    Google Scholar 

  • Koenig, E., Kinsman, S., Repasky, E. &Sultz, L. (1985) Rapid mobility of motile varicosities and inclusions containing alpha-spectrin, actin, and calmodulin in regenerating axonsin vitro.Journal of Neuroscience 5, 715–29.

    Google Scholar 

  • Li, J. Y., Kling-Petersen, A. &Dahlström, A. B. (1993) GAP 43-like immunoreactivity in normal adult rat sciatic nerve, spinal cord, and motoneurons: Axonal transport and effect of spinal cord transection.Neuroscience 57, 759–76.

    Google Scholar 

  • Liu, Y. C. &Storm, D. R. (1990) Regulation of free calmodulin levels by neuromodulin: neuron growth and regeneration.Trends in Pharmacological Sciences 11, 107–11.

    Google Scholar 

  • Maier, C. E. &McQuarrie, I. G. (1990) Increased slow transport in axons of regenerating newt limbs after a nerve conditioning lesion.Developmental Biology 140, 172–81.

    Google Scholar 

  • Mata, M. &Fink, D. J. (1988) Calmodulin distribution in peripheral nerve: an EM immunocytochemical study.Brain Research 475, 297–304.

    Google Scholar 

  • McQuarrie, I. G. &Jacob, J. M. (1991) Conditioning nerve crush accelerates cytoskeletal protein transport in sprouts that form after a subsequent crush.Journal of Comparative Neurology 305, 139–47.

    Google Scholar 

  • Means, A. R., Vanberkum, M. F. A., Bagchi, I., Lu, K. P. &Rasmussen, C. D. (1991) Regulatory functions of calmodulin.Pharmacology and Therapy 50, 255–70.

    Google Scholar 

  • Mercken, M., Lubke, U., Vandermeeren, M., Gheuens, J. &Oestreicher, A. B. (1992) Immunocytochemical detection of the growth-associated protein B-50 by newly characterized monoclonal antibodies in human brain and muscle.Journal of Neurobiology 23, 309–21.

    Google Scholar 

  • Oestreicher, A. B., Van Dongen, C. J., Zwiers, H. &Gispen, W. H. (1983) Affinity-purified anti-B-50 protein antibody: interference with the function of the phospho-protein B-50 in synaptic plasma membranes.Journal of Neurochemistry 41, 331–40.

    Google Scholar 

  • Polak, K. A., Edelman, A. M., Wasley, J. W. &Cohan, C. S. (1991) A novel calmodulin antagonist, CGS 9343B, modulates calcium-dependent changes in neurite out-growth and growth cone movements.Journal of Neuroscience 11, 534–42.

    Google Scholar 

  • Skene, J. H. P. (1989) Axonal growth-associated proteins.Annual Reviews in Neuroscience 12, 127–56.

    Google Scholar 

  • Skene, J. H. P. &Virag I. (1989) Posttranslational membrane attachment and dynamic fatty acylation of a neural growth cone protein, GAP-43.Journal of Cell Biology 108, 613–24.

    Google Scholar 

  • Skene, J. H. P. &Willard, M. B. (1981A) Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells.Journal of Cell Biology 89, 86–95.

    Google Scholar 

  • Skene, J. H. P. &Willard, M. B. (1981b) Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems.Journal of Cell Biology 89, 96–103.

    Google Scholar 

  • Spencer, S. A. &Willard, M. B. (1992) Does GAP-43 support axon growth by increasing the axonal transport velocity of calmodulin.Experimental Neurology 115, 167–72.

    Google Scholar 

  • Strittmatter, S. M., Vartanian, T. &Fishman, M. C. (1992) GAP-43 as a plasticity protein in neuronal form and repair.Journal of Neurobiology 23, 507–20.

    Google Scholar 

  • Tetzlaff, W., Bisby, M. A. &Kreutzberg, G. W. (1988) Changes in cytoskeletal proteins in the rat facial nucleus following axotomy.Journal of Neuroscience 8, 3181–89.

    Google Scholar 

  • Tetzlaff, W., Zwiers, H., Lederis, K., Cassar, L. &Bisby, M. A. (1989) Axonal transport and localization of B-50/GAP-43-like immunoreactivity in regenerating sciatic and facial nerves of the rat.Journal of Neuroscience 9, 1303–13.

    Google Scholar 

  • Tetzlaff, W., Alexander, S. W., Miller, F. D. &Bisby, M. A. (1991) Response of facial and rubrospinal neurons to axotomy — changes in messenger RNA expression for cytoskeletal proteins and GAP-43.Journal of Neuroscience 11, 2528–44.

    Google Scholar 

  • Trump, B. F. &Berezesky, I. K. (1992) The role of cytosolic Ca2+ in cell injury, necrosis and apoptosis.Current Opinions in Cell Biology 4, 227–32.

    Google Scholar 

  • Ulenkate, H. J. L. M., Verhaagen, J., Plantinga, L. C., Mercken, M., Veldman, H., Jennekens, F. G. I., Gispen, W. H. &Oestreicher, A. B. (1993) Upregulation of B-50/GAP-43 in Schwann cells at denervated motor endplates and in motoneurons after rat facial nerve crush.Restorative Neurology and Neuroscience 6, 35–47.

    Google Scholar 

  • Van Der Zee, C. E. E. M., Nielander, H. B., Vos, J. P., Lopes Da Silva, S., Verhaagen, J., Oestreicher, A. B., Schrama, L. H., Schotman, P. &Gispen, W. H. (1989) Expression of growth-associated protein B-50 (GAP43) in dorsal root ganglia and sciatic nerve during regenerative sprouting.Journal of Neuroscience 9, 3505–12.

    Google Scholar 

  • Van Lookeren Campagne, M., Oestreicher, A. B., Van Der Krift, T. P., Gispen, W. H. &Verkleij, A. J. (1991) Freeze-substitution and Lowicryl HM20 embedding of fixed rat brain: suitability for immunogold ultrastructural localization of neural antigens.Journal of Histochemistry and Cytochemistry 39, 1267–79.

    Google Scholar 

  • Verhaagen, J., Van Hooff, C. O. M., Edwards, P. M., De Graan, P. N. E., Oestreicher, A. B., Schotman, P., Jennekens, F. G. I. &Gispen, W. H. (1986) The kinase C substrate protein B-50 and axonal regeneration.Brain Research Bulletin 17, 737–41.

    Google Scholar 

  • Verkade, P., Oestreicher, A. B., Verkleij, A. J. &Gispen, W. H. (1995) The increase in B-50/GAP-43 in regenerating rat sciatic nerve occurs predominantly in unmyelinated axon shafts: a quantitative ultrastructural study.Journal of Comparative Neurology 356, 433–43.

    Google Scholar 

  • Verkade, P., Verkleij, A. J., Annaert, W. G., Gispen, W. H. &Oestreicher, A. B. (1996a) Ultrastructural localization of B-50/GAP-43 to anterogradely transported synaptophysin-positive and calcitonin gene-related peptide-negative vesicles in the regenerating rat sciatic nerve.Neuroscience 71, 489–505.

    Google Scholar 

  • Verkade, P., Verkleij, A. J., Gispen, W. H. & Oestreicher, A. B. (1996b) Association of calmodulin and B-50/GAP-43in situ at the plasma membrane of unmyelinated axons: Ultrastructural co-localisation.submitted.

  • Vogel, H. J. (1994) Calmodulin: a versatile calcium mediator protein.Biochemical Cell Biology 72, 357–76.

    Google Scholar 

  • Wong, J. &Oblinger, M. M. (1990) A comparison of peripheral and central axotomy effects on neurofilament and tubulin gene expression in rat dorsal root ganglion neurons.Journal of Neuroscience 10, 2215–22.

    Google Scholar 

  • Woolf, C. J., Reynolds, M. L., Chong, M. S., Emson, P. C., Irwin, N. &Benowitz, L. I. (1992) Denervation of the motor endplate results in the rapid expression by terminal Schwann Cells of the Growth- Associated Protein-GAP-43.Journal of Neuroscience 12, 3999–4010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkade, P., Verkleij, A.J., Gispen, W.H. et al. Ultrastructural evidence for the lack of co-transport of B-50/GAP-43 and calmodulin in myelinated axons of the regenerating rat sciatic nerve. J Neurocytol 25, 583–595 (1996). https://doi.org/10.1007/BF02284826

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02284826

Keywords

Navigation