Skip to main content
Log in

Isoprostanes, Novel Markers of Oxidative Injury, Help Understanding the Pathogenesis of Neurodegenerative Diseases

  • Note
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Isoprostanes are prostaglandin-like compounds which are formed by free radical catalysed peroxidation of arachidonic acid esterified in membrane phospholipids. They are emerging as a new class of sensitive, specific and reliable markers of in vivo lipid peroxidation and oxidative damage. Since their initial description of in 1990, the rapid development of analytical methods for isoprostane measurement has allowed to overcome some of the pitfalls of the previous and most widely used methods of assessing free radical injury. Here, we summarise the current knowledge on these novel class lipid peroxidation products and the advantages of monitoring their formation to better define the involvement of oxidative stress in neurological diseases. Although the literature data are still not abundant, they indicate that in vivo or post mortem cerebrospinal fluid and brain tissue levels of isoprostane are increased in some diseases such as multiple sclerosis, Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Chan, P. H. 1996. Role of oxidants in ischemic brain damage. Stroke 27:1124-1129.

    Google Scholar 

  2. Weber, G. F. 1994. The pathophysiology of reactive oxygen intermediates in the central nervous system. Medical Hypotheses 43:223-230.

    Google Scholar 

  3. Jenner, P. 1994. Oxidative damage in neurodegenerative disease. Lancet 344:796-798.

    Google Scholar 

  4. Olanow, C. W. 1993. A radical hypothesis for neurodegeneration. Trends Neurosci. 16:439-444.

    Google Scholar 

  5. Farooqui, A. A. and Horrocks, L. A. 1998. Lipid peroxides in the free radical pathophysiology of brain diseases. Cell. Mol. Neurobiol. 18:599-608.

    Google Scholar 

  6. Delanty, N. and Dichter, M. A. 1998. Oxidative injury in the nervous system. Acta Neurol. Scand. 98:145-153.

    Google Scholar 

  7. Halliwell, B. 1989. Oxidants and the central nervous system: some fundamental questions. Acta Neurol. Stand. 126:23-33.

    Google Scholar 

  8. Moore, K. and Roberts II, L. J. 1998. Measurement of lipid peroxidation. Free Rad. Res. 28:659-671.

    Google Scholar 

  9. Yeo, H. C., Helbock, H. J., Chyu, D. W., and Ames, B. N. 1994. Assay of malondialdehyde in biological fluids by gas chromatography-mass spectrometry. Anal. Biochem. 220:391-396.

    Google Scholar 

  10. Cailleux, A. and Allain, P. 1993: Is pentane a normal constituent of human breath? Free Rad. Res. Commun. 18:323-327.

    Google Scholar 

  11. Halliwell, B. and Gutteridge, M. C. 1987. The measurement of free radical reactions in human. FEBS Lett. 213:9-14.

    Google Scholar 

  12. Halliwell, B., Gutteridge, M. C., and Cross, C. E. 1992. Free radicals, antioxidants, and human diseases: where are we now? J. Lab. Clin. Med. 119:598-618.

    Google Scholar 

  13. Rimbach, G., Hohler, D., Fischer, A., Roy, S., Virgili, F., Pallauf, J., and Packer, L. 1999. Methods to assess free radicals and oxidative stress in biological systems. Arch. Tierernahr. 52:203-222.

    Google Scholar 

  14. Morrow, J. D., Hill, K. E., Burk, R. F., Nammour, T. M., Badr, K. F., and Roberts II, L. J. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalysed mechanism. Proc. Natl. Acad. Sci. USA 87:9383-9387.

    Google Scholar 

  15. Lawson, J. A., Rokach, J., and Fitzgerald, G. A. 1999. Isoprostanes: Formation, analysis and use as indices of lipid peroxidation in vivo. J. Biol. Chem. 274:24441-24444.

    Google Scholar 

  16. Nourooz-Zadeh, J., Liu, E. H., Anggard, E. E., and Halliwell, B. 1998. F4-isoprostanes: a novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA). Biochem. Biophys. Res. Commun. 242:338-344.

    Google Scholar 

  17. Roberts II, L. J., Montine, T. J., Markesbery, W. R., Tapper, A. R., Hardy, P., Chemtob, S., Dettbarn, W. D., and Morrow, J. D. 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273:13605-13612.

    Google Scholar 

  18. Mallat, Z., Philip, I., Lebret, M., Chatel, D., Maclouf, J., and Tedgui, A. 1998. Elevated levels of 8-iso-prostaglandin Fin pericardial fluid of patients with heart failure. Circulation. 97: 1536-1539.

    Google Scholar 

  19. Leo, M. A., Aleynik, S. I., Siegel, J. H., Kasmin, F. E., Aleynik, M. K., and Lieber, C. S. 1997. F2-isoprostane and 4-hydroxynonenal excretion in human bile of patients with biliary tract and pancreatic disorders. Am. J. Gastroenterol. 92:2069-2072.

    Google Scholar 

  20. Montuschi, P., Ciabattoni, G., Paredi, P., Pantelidis, P., duBois, R. M., Kharitonov, S. A., and Barnes, P. J. 1998. 8-Isoprostane as a Biomarker of Oxidative Stress in Interstitial Lung Diseases. Am. J. Respir. Crit. Care Med. 158:1524-1527.

    Google Scholar 

  21. Montine, T. J., Markesbery, W. R., Morrow, J. D., and Roberts II, L. J. 1998. Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer's disease. Ann. Neurol. 44:410-413.

    Google Scholar 

  22. Wang, Z., Ciabattoni, G., Creminon, C., Lawson, J., Fitzgerald, G. A., Patrono, C., and Maclouf, J. 1995. Immunological characterization of urinary 8-epi-prostaglandin Fexcretion in man. J. Pharmacol. Exp. Ther. 275:94-100.

    Google Scholar 

  23. Praticò , D., Lawson, J., and FitzGerald, G. A. 1995. Cycooxygenase dependent formation of 8-epi-PGFin human platelets. 1995. J. Biol. Chem. 270:9800-9808.

    Google Scholar 

  24. Patrignani, P., Santini, G., Panara, M. R., Sciulli, G., Greco, A., Rotondo, M. T., di Giamberardino, M., Maclouf, J., Ciabattoni, G., and Patrono, C. 1996. Induction of prostaglandin endoperoxyde synthase-2 in human monocytes associated with cyclooxygenase-dependent F2-isoprostane formation. Br. J. Pharmacol. 118:1285-1293.

    Google Scholar 

  25. Reilly, M. P., Delanty, N., Lawson, J. A., and Fitzgerald, G. A. 1996. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation 94:19-25.

    Google Scholar 

  26. Ciabattoni, G., Patrignani, P., Panara, M. R., Greco, A., Cipollone, F., Davi', G., Di Minno, G., Coppola, A., and Patrono, C. 1996. Studies of isoprostane biosynthesis in man. Pages 111-115, in Folco, Samuelsson, Maclouf and Velo (eds.), Eicosanoids: from Biotechnology to Therapeutic Applications, Plenum Press, New York.

    Google Scholar 

  27. Waugh, R. J. and Murphy, R. C. 1996. Mass spectrometric analysis of four reigioisomers of formed by free radicals oxidation of arachidonic acid. J. Am. Soc. Mass. Spectrom. 7:490-499.

    Google Scholar 

  28. Greco, A., Minghetti, L., Sette, G., Fieschi, C., and Levi, G. 1999. Cerebrospinal fluid isoprostane shows oxidative stress in patients with multiple sclerosis. Neurology 53:1876-1879.

    Google Scholar 

  29. Minghetti, L., Greco, A., Cardone, F., Puopolo, M., Ladogana, A., Almonti, S., Cunningham, C., Perry, V. H., Pocchiari, M., and Levi, G. 2000. Increased brain synthesis of prostaglandin E2 and F2-isoprostane in human and experimental transmissible spongiform encephalopaties. J. Neuropathol. Exp. Neurol. 59:20-25.

    Google Scholar 

  30. Reilly, M. P., Lawson, J. A., and Fitzgerald, G. A. 1998. Eicosanoids and Isoecosanoids: indices of cellular function and oxidant stress. J. Nutr. 128:434S-438S.

    Google Scholar 

  31. Morrow, J. D. and Roberts, L. J. 1997. The isoprostanes: unique bioactive products of lipid peroxidation. Prog. Lipid Res. 36:1-21.

    Google Scholar 

  32. Roberts II, L. J. and Morrow, J. D. 1997. The generation and actions of isoprostanes. Biochem. Biophys. Acta 1345:121-135.

    Google Scholar 

  33. Morrow, J. D., Minton, T. A., and Roberts II, L. J. 1992. The F2-isoprostane, 8-epi-prostaglandin F, a potent agonist of the vascular thromboxane/endoperoxide receptor, is a platelet thromboxane/ endoperoxide receptor antagonist. Prostaglandins 44:155-163.

    Google Scholar 

  34. Yin, K., Halushka, P. V., Yan, Y.-T., and Wong, P. Y.-K. 1994. Antiaggregatory activity of 8-epi-prostaglandin Fand other Fseries prostanoids and their binding to thromboxane A2/prostaglandin H2 receptors in human platelets. J. Pharmacol. Exp. Ther. 270:1192-1196.

    Google Scholar 

  35. Praticò , D., Smyth, E., Violi, F., and FitzGerald, G. A. 1996. Local amplification of platelet function by 8-epi-prostaglandin Fis not mediated by thromboxane receptor isoforms. J. Biol. Chem. 271:14916-14924.

    Google Scholar 

  36. Elmhurst, J. L., Betti, P.-A., and Rangachari, P. K. 1997. Intestinal effects of isoprostanes: evidence for the involvement of prostanoid EP and TP receptors. J. Pharmacol. Exp. Ther. 282:1198-1205.

    Google Scholar 

  37. Souvignet, C., Cracowski, J. L., Stanke-Labesque, F., and Bessard, G. 2000. Are isoprostanes a clinical marker for antioxidant drug investigation? Fundam. Clin. Pharmacol. 14:1-10.

    Google Scholar 

  38. Awad, J. A., Roberts II, L. J., Burk, R. F., and Morrow, J. D. 1996. Isoprostanes: prostaglandin-like compounds formed in vivo independently of cyclooxygenase: use as clinical indicators of oxidant damage. Gastroenterol. Clin. North Am. 25:409-427.

    Google Scholar 

  39. Roberts II, L. J., Brame, C. J., Chen, Y., and Morrow, J. D. 1999. Novel eicosanoids. Isoprostanes and related compounds. Methods Mol. Biol. 120:257-285.

    Google Scholar 

  40. Patrono, C. and Fitzgerald, G. A. 1997. Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Atheroscler. Thromb. Vasc. Biol. 17:2309-2315.

    Google Scholar 

  41. Liu, T., Stern, A., Roberts II, L. J., and Morrow, J. D. 1999. The isoprostanes: novel prostaglandin-like products of the free radical-catalyzed peroxidation of AA. Biomed. Sci. 6:226-35.

    Google Scholar 

  42. Montine, T. J., Beal, M. F., Cudkowicz, M. E., O'Donnell, H., Margolin, R. A., McFarland, M. S. N., Bachrach, A. F., Zackert, W. E., Roberts II, L. J., and Morrow, J. D. 1999. Increased CSF F2-isoprostane concentration in probable AD. Neurology 52: 562-565.

    Google Scholar 

  43. Nourooz-Zadeh, J., Liu, E. H., Yhlen, B., Anggard, E. E., and Halliwell, B. 1999. F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer's disease. J. Neurochem. 72:734-740.

    Google Scholar 

  44. Praticò , D., Lee, V. M. Y., Trojanowski, J. Q., Rokach, J., and Fitzgerald, G. A. 1998. Increased F2-isoprostanes in Alzheimer's disease: evidence for enhanced lipid peroxidation in vivo. FASEB J. 12:1777-1783.

    Google Scholar 

  45. Waddington, E., Croft, K., Clarnette, R., Mori, T., and Martins, R. 1999. Plasma F2-isoprostane levels are increased in Alzheimer's disease: evidence for increased oxidative stress in vivo. Alzheimer's Report 2:277-282.

    Google Scholar 

  46. Montine, T. J., Beal, M. F., Cudkowicz, M. E., Biaggioni, I., O'-Donnell, H., Zackert, W. E., Roberts II, L. J., and Morrow, J. D. 1999. Cerebrospinal fluid F2-isoprostanes are elevated in Huntington's disease. Neurology 23:1104-1105.

    Google Scholar 

  47. Markesbery, W. R. and Carney, J. M. 1999. Oxidative alteration in Alzheimer's disease. Brain Pathol. 9:133-146.

    Google Scholar 

  48. Mattson, M. P. 1997. Central role of oxyradicals in the mechanism of amyloid β-peptide cytotoxicity. Alzheimer's Disease Review 2:1-14.

    Google Scholar 

  49. Paganini-Hill, A. and Henderson, V. W. 1994. Estrogen deficiency and risk of Alzheimer's disease in women. Am. J. Epidemiol. 140: 256-261.

    Google Scholar 

  50. Goodman, Y., Bruce, A. J., Cheng, B., and Mattson, M. P. 1996. Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid b-peptide toxicity in hippocampal neurons. J. Neurochem. 66:1836-1844.

    Google Scholar 

  51. Praticò , D., Rokach, J., and Tangirala, R. K. 1999. Brains of aged apolipoprotein E-deficient mice have increased levels of F2-isoprostanes, in vivo markers of lipid peroxidation. J. Neurochem. 73:736-41.

    Google Scholar 

  52. Mark, R. J., Fuson, K. S., and May, P. C. 1999. Characterization of 8-epiprostaglandin Fas a marker of amyloid β-peptide-induced oxidative damage. J. Neurochem. 72:1146-1153.

    Google Scholar 

  53. Smith, K. J., Kapoor, R., and Felts, P. A. 1999. Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol. 9:69-92.

    Google Scholar 

  54. LeVine, S. M. 1992. The role of reactive oxygen species in the pathogenesis of multiple sclerosis. Med. Hypotheses 39:271-274.

    Google Scholar 

  55. Fieschi, C., Gasperini, C., Ristori, G., Bastianello, S., Girmenia, F., Leuzzi, V., Buttinelli, C., and Rasura, M. 1995. Patients with clinically definite multiple sclerosis, white matter abnormalities on MRI, and normal CSF: if not multiple sclerosis, what is it? J. Neurol. Neurosurg. Psychiatry 58:255-256.

    Google Scholar 

  56. Kurtzke, J. F. 1983. Rating neurological impairment in MS. Neurology 33:1444-1452.

    Google Scholar 

  57. van der Veen, R. C. and Roberts II, L. J. 1999. Contrasting roles for nitric oxide and peroxynitrite in the peroxidation of myelin lipids. J. Neuroimmunol. 95:1-7.

    Google Scholar 

  58. Browne, S. E., Ferrante, R. J., and Beal, M. F. 1999. Oxidative stress in Huntington's Disease. Brain Pathol. 9:147-163.

    Google Scholar 

  59. Will, R. G., Alpérovitch, A., Poser, S., Pocchiari, M., Hofman, A., Mitrova, E., de Silva, R., D'Alessandro, M., Delasnerie-Laupretre, N., Zerr, I., and van Duijn, C. 1998. Descriptive epidemiology of Creutzfeldt-Jakob disease in six European countries, 1993-1995. Ann. Neurol. 43:763-767.

    Google Scholar 

  60. McGeer, P. L. and McGeer, E. G. 1995. The inflammatory response system of brain: Implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev. 21:195-218.

    Google Scholar 

  61. Perry, V. H., Bolton, S. J., Antony, D. C., and Betmouni, S. 1998. The contribution of inflammation to acute and chronic neurodegeneration. Res. Immunol. 149:721-725.

    Google Scholar 

  62. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. 1996. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380:345-347.

    Google Scholar 

  63. Giese, A., Brown, D. R., Groschup, M. H., Feldmann, C., Haist, I., and Kretzschmar, H. A. 1998. Role of microglia in neuronal cell death in prion disease. Brain Pathol. 8:449-457

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, A., Minghetti, L. & Levi, G. Isoprostanes, Novel Markers of Oxidative Injury, Help Understanding the Pathogenesis of Neurodegenerative Diseases. Neurochem Res 25, 1357–1364 (2000). https://doi.org/10.1023/A:1007608615682

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007608615682

Navigation