Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Twisted gastrulation can function as a BMP antagonist

Abstract

Bone morphogenetic proteins (BMPs), including the fly homologue Decapentaplegic (DPP), are important regulators of early vertebrate and invertebrate dorsal–ventral development1,2,3,4,5,6. An evolutionarily conserved BMP regulatory mechanism operates from fly to fish, frog and mouse to control the dorsal–ventral axis determination. Several secreted factors, including the BMP antagonist chordin/Short gastrulation (SOG)7,8,9,10,11,12, modulate the activity of BMPs. In Drosophila, Twisted gastrulation (TSG) is also involved in dorsal–ventral patterning13,14,15, yet the mechanism of its function is unclear. Here we report the characterization of the vertebrate Tsg homologues. We show that Tsg can block BMP function in Xenopus embryonic explants and inhibits several ventral markers in whole-frog embryos. Tsg binds directly to BMPs and forms a ternary complex with chordin and BMPs. Coexpression of Tsg with chordin leads to a more efficient inhibition of the BMP activity in ectodermal explants. Unlike other known BMP antagonists, however, Tsg also reduces several anterior markers at late developmental stages. Our data suggest that Tsg can function as a BMP inhibitor in Xenopus; furthermore, Tsg may have additional functions during frog embryogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vertebrate Tsgs inhibit BMP signalling in embryonic explants.
Figure 2: Overexpression of Tsg perturbs early Xenopus development and interferes with formation of tissues that require active BMP signalling.
Figure 3: Membrane-tethered Xenopus Tsg induces partial secondary axis when expressed in the ventral region.
Figure 4: Xenopus Tsg binds to Bmp4, forms a ternary complex with chordin and Bmp4, and coexpression of chordin and Tsg leads to a more efficient inhibition of BMP activity in ectodermal explants.

Similar content being viewed by others

References

  1. Irish, V. F. & Gelbart, W. M. The decapentaplegic gene is required for dorsal-ventral patterning of the Drosophila embryo. Genes Dev. 1, 868–879 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Ferguson, E. L. & Anderson, K. V. Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71, 451–461 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Wharton, K. A., Ray, R. P. & Gelbart, W. M. An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117, 807–822 (1993).

    CAS  PubMed  Google Scholar 

  4. Dale, L., Howes, G., Price, B. M. J. & Smith, J. C. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585 (1992).

    CAS  PubMed  Google Scholar 

  5. Fainsod, A., Steinbeisser, H. & De Robertis, E. M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryos. EMBO J. 13, 5015–5025 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones, C. M., Dale, L., Hogan, B. L. M., Wright, C. V. E. & Smith, J. C. Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos. Development 122, 1545–1554 (1996).

    CAS  PubMed  Google Scholar 

  7. Ferguson, E. L. & Anderson, K. V. Localized enhancement and repression of the activity of the TGF-β family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development 114, 583–597 (1992).

    CAS  PubMed  Google Scholar 

  8. Francois, V., Solloway, M., O'Neill, J. W., Emery, J. & Bier, E. Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev. 8, 2602–2616 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Biehs, B., Francois, V. & Bier, E. The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Dev. 10, 2922–2934 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Holley, S. A. et al. A conversed system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376, 249–253 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Schmidt, J., Francois, V., Bier, E. & Kimelman, D. Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanism of dorsal-ventral patterning. Development 121, 4319–4328 (1995).

    CAS  PubMed  Google Scholar 

  12. Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zusman, S. B. & Wieschaus, E. F. Requirements for zygotic gene activity during gastrulation in Drosophila melanogaster. Dev. Biol. 111, 359–371 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Mason, E. D., Konrad, K. D., Webb, C. D. & Marsh, J. L. Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. Genes Dev. 8, 1489–1501 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Mason, E. D., Williams, S., Grotendorst, G. R. & Marsh, J. L. Combinatorial signaling by twisted gastrulation and decapentaplegic. Mech. Dev. 64, 61–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Wilson, P. A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Sasai, Y., Lu, B., Steinbeisser, H. & De Robertis, E. M. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Hawley, S. H. B. et al. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9, 2923–2935 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Hemmati-Brivanlou, A. & Thomsen, G. H. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 17, 78–89 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Schultheiss, T. M., Burch, J. B. E. & Lassar, A. B. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 11, 451–462 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Shi, Y., Katsev, S., Cai, C. & Evans, S. BMP signaling is required for heart formation in vertebrates. Dev. Biol. 224, 226–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Zimmerman, L. B., De Jesus-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Yu, K. et al. Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity. Development 127, 2143–2154 (2000).

    CAS  PubMed  Google Scholar 

  24. Scott, I. C. et al. Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling. Nature 410, 475–478 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Ross, J. J. et al. Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 410, 479–483 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Oelgeschlager, M., Larrain, J., Geissert, D. & De Robertis, E. M. The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405, 757–763 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vesque, C. et al. Development of chick axial mesoderm: specification of precordal mesoderm by anterior endoderm-derived TGFβ family signalling. Development 127, 2795–2809 (2000).

    CAS  PubMed  Google Scholar 

  28. Dale, J. K. et al. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90, 257–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Hammerschmidt, M., Serbedzija, G. N. & McMahon, A. P. Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev. 10, 2452–2461 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Chang, C. & Hemmati-Brivanlou, A. Xenopus GDF6, a new antagonist of noggin and a partner of BMPs. Development 126, 3347–3357 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Lee and T. Jessell for providing the chick chordin construct; G. Struhl for providing the CD2 construct; A. Economides for technical advice on biochemical studies; and P. Wilson, D. Weinstein, E. Bell and I. Zohn for critical reading of the manuscript. We are grateful to M. O'Connor, K. Cho, L. Marsh and D. Greenspan for communicating their results before publication. This work is supported by an NIH grant to A.H.B., who is a McKnight, Merck and Klingenstein scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Brivanlou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, C., Holtzman, D., Chau, S. et al. Twisted gastrulation can function as a BMP antagonist. Nature 410, 483–487 (2001). https://doi.org/10.1038/35068583

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35068583

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing