Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomerase primer specificity and chromosome healing

Abstract

CHROMOSOME healing by de novo telomere addition at non-telomeric sites has been well characterized in several organisms1–9. The Tetrahymena telomerase ribonucleoprotein uses an internal RNA template to catalyse d(TTGGGG)n telomere addition to the 3 end of telomeric sequence in vitro and in vivo10,11. Studies of telomerase RNA indicated that hybridization of the RNA template region, 5-CAACCCCAA-3, to the 3 end of single-stranded telomeric oligonucleotides might be important for primer recognition and utilization10. The apparent requirement of telomerase for pre-existing telomeric sequence has raised questions regarding its role in chromosome healing12,13. We report here that Tetrahymena telomerase can specifically elongate single-stranded DNA oligonucleotides whose termini are not complementary to the RNA template sequence 5-CAACCCCAA-3. These data suggest that telomerase may be able to heal chromosomes directly in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pologe, L. G. & Ravetch, J. V. Cell 55, 869–874 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Matsumoto, T. et al. Molec. Cell. Biol. 7, 4424–4430 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Richards, E. R. & Ausubel, F. M. Cell 53, 127–136 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Haber, J. E. & Thorburn, P. C. Genetics 106, 207–226 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Baroin, A., Prat, A. & Caron, F. Nucleic Acids Res. 15, 1717–1728 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forney, J. D. & Blackburn, E. H. Molec. Cell. Biol. 8, 251–258 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yao, M.-C. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 715–743 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  8. Murray, A. W., Claus, T. E. & Szostak, J. W. Molec. Cell. Biol. 8, 4642–4650 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilkie, A. O. M., Lamb, J., Harris, P. C., Finney, R. D. & Higgs, D. R. Nature 346, 868–871 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Greider, C. W. & Blackburn, E. H. Nature 337, 331–337 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yu, G.-L., Bradley, J. D., Attardi, L. D. & Blackburn, E. H. Nature 344, 126–132 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Murray, A. Nature 346, 797–798 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Zakian, V. A., Runge, K. & Wang, S.-S. Trends Genet. 6, (1990).

  14. Greider, C. W. & Blackburn, E. H. Cell 51, 887–898 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Johnston, R. F., Pickett, S. C. & Barker, D. L. Electrophoresis 11, 355–360 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Henderson, E., Hardin, C., Wolk, S., Tinoco, I. & Blackburn, E. H. Cell 51, 899–908 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Sen, D. & Gilbert, W. Nature 334, 364–366 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Sundquist, W. I. & Klug, A. Nature 342, 825–829 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Sen, D. & Gilbert, W. Nature 344, 410–414 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Williamson, J. R., Raghuraman, M. K. & Cech, T. R. Cell 59, 871–880 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Henderson, E. R., Moore, M. & Malcolm, B. A. Biochemistry 29, 732–737 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Zahler, A. M., Williamson, J. R., Cech, T. R. & Prescott, D. M. Nature 350, 718–720 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. White, C. I. & Haber, J. E. EMBO J. 9, 663–673 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spangler, E. A. & Blackburn, E. H. Nucleic Acids Res. 16, 5569 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McClintock, B. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. McClintock, B. Genetics 28, 458–463 (1942).

    CAS  Google Scholar 

  27. Greider, C. W. & Blackburn, E. H. Cell 43, 405–413 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Maxam, A. M. & Gilbert, W. Methods Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrington, L., Harrington, L. Telomerase primer specificity and chromosome healing. Nature 353, 451–454 (1991). https://doi.org/10.1038/353451a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353451a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing