Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prion protein is necessary for normal synaptic function

Abstract

THE prion diseases are neurodegenerative conditions, transmissible by inoculation, and in some cases inherited as an autosomal dominant disorder. They include Creutzfeldt–Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. The prion consists principally of a post-translationally modified form of a host-encoded glycoprotein (PrPc), designated PrPSc (ref. 1); the normal cellular function of PrPc is, however, unknown. Although PrP is highly conserved among mammals and widely expressed in early embryogenesis, mice homozygous for disrupted PrP genes appear developmentally and behaviourally normal2. PrP is a protein anchored to the neuronal surface by glycosylphosphatidylinositol, suggesting a role in cell signalling or adhesion. Here we report that hippocampal slices from PrP null mice have weakened GABAA (γ-aminobutyric acid type A) receptor-mediated fast inhibition and impaired long-term potentiation. This impaired synaptic inhibition may be involved in the epileptiform activity seen in Creutzfeldt–Jakob disease and we argue that loss of function of PrPc may contribute to the early synaptic loss3 and neuronal degeneration seen in these diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Prusiner, S. B. Science 252, 1515–1522 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Bueler, H. et al. Nature 356, 577–582 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Clinton, J., Forsyth, C., Royston, M. C. & Roberts, G. W. Neuroreport 4, 65–68 (1993).

    Article  CAS  Google Scholar 

  4. DeArmond, S. J. et al. Neurology 37, 1271–1280 (1987).

    Article  CAS  Google Scholar 

  5. Thompson, S. M. & Gahwiler, B. H. J. Neurophysiol. 61, 501–511 (1989).

    Article  CAS  Google Scholar 

  6. Davies, C. H., Davies, S. N. & Collingridge, G. L. J. Physiol., Lond. 424, 513–531 (1990).

    Article  CAS  Google Scholar 

  7. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Grover, L. M., Lambert, N. A., Schwartzkroin, P. A. & Teyler, T. J. J. Neurophysiol. 69, 1541–1555 (1993).

    Article  CAS  Google Scholar 

  9. Alger, B. E. & Nicoll, R. A. J. Physiol., Lond. 328, 125–141 (1982).

    Article  CAS  Google Scholar 

  10. Brown, D. A., Higgins, A. J., Marsh, S. & Smart, T. G. Adv. Biochem. Psychopharmac. 29, 321–326 (1981).

    CAS  Google Scholar 

  11. Allan, R. D., Evans, R. H. & Johnston, G. A. Br. J. Pharmac. 70, 609–615 (1980).

    Article  CAS  Google Scholar 

  12. Brace, H. M., Jefferys, J. G. R. & Mellanby, J. J. Physiol., Lond. 368, 343–357 (1985).

    Article  CAS  Google Scholar 

  13. Herron, C. E., Williamson, R. & Collingridge, G. L. Neurosci. Lett. 61, 255–260 (1985).

    Article  CAS  Google Scholar 

  14. Coan, E. J., Irving, A. J. & Collingridge, G. L. Neurosci. Lett. 105, 205–210 (1989).

    Article  CAS  Google Scholar 

  15. Huang, Y. Y., Colino, A., Selig, D. K. & Malenka, R. C. Science 255, 730–733 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Bendheim, P. E. et al. Neurology 42, 149–156 (1992).

    Article  CAS  Google Scholar 

  17. Prusiner, S. B. et al. Cell 63, 673–686 (1990).

    Article  CAS  Google Scholar 

  18. Weissmann, C. Nature 349, 569–571 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Palmer, M. S., Dryden, A. J., Hughes, J. T. & Collinge, J. Nature 352, 340–342 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Collinge, J. et al. Lancet 336, 7–9 (1990).

    Article  CAS  Google Scholar 

  21. Jefferys, J. G. R., Empson, R. M., Whittington, M. A. & Prusiner, S. B. Neurobiology of Disease 1, 3–15 (1994).

    Article  Google Scholar 

  22. Smith, T. L. J. Pharmac. exp. Ther. 232, 702–707 (1985).

    ADS  CAS  Google Scholar 

  23. Empson, R. M. & Jefferys, J. G. R. J. Physiol., Lond. 465, 595–614 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collinge, J., Whittington, M., Sidle, K. et al. Prion protein is necessary for normal synaptic function. Nature 370, 295–297 (1994). https://doi.org/10.1038/370295a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370295a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing