Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Options available — from start to finish — for obtaining expression data by microarray

A Correction to this article was published on 01 February 1999

Abstract

The excitement surrounding microarray technology has been tempered by the limited ability of the general biomedical research community to gain access to it. Given that the hardware required for exploitation of the technology is becoming increasingly available, it is an appropriate moment to review options, be they commercially or publically available. Here, we provide a snapshot of the rapidly changing field of microarray–based RNA expression analysis and consider the components and procedures for putting together a complete system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow path schematic of the interacting components required for RNA–expression analysis using DNA–microarrays generated by robotic arraying of PCR products from cDNA clone sets.

Similar content being viewed by others

References

  1. Gress, T.M. et al. Hybridization fingerprinting of high–density cDNA–library arrays with cDNA pools derived from whole tissues. Mamm. Genome 3, 609–619 ( 1992).

    Article  CAS  Google Scholar 

  2. Friemert, C., Erfle, V. & Strauss, G. Preparation of radiolabeled cDNA probes with high specific activity for rapid screening of gene expression. Methods Mol. Cell Biol. 1, 143–153 ( 1989).

    CAS  Google Scholar 

  3. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [see comments]. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  4. Shalon, D., Smith, S.J. & Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two–color fluorescent probe hybridization. Genome Res. 6, 639–645 ( 1996).

    Article  CAS  Google Scholar 

  5. Schena, M. et al. Parallel human genome analysis: microarray–based expression monitoring of 1000 genes. Proc. Natl Acad. Sci. USA 93, 10614–10619 (1996).

    Article  CAS  Google Scholar 

  6. Derisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457– 460 (1996).

    Article  CAS  Google Scholar 

  7. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680– 686 (1997).

    Article  CAS  Google Scholar 

  8. Lashkari, D.A. et al. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl Acad. Sci. USA 94, 13057–13062 (1997).

    Article  CAS  Google Scholar 

  9. Welford, S.M. et al. Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. Nucleic Acids Res. 26, 3059 –3065 (1998).

    Article  CAS  Google Scholar 

  10. Heller, R.A. et al. Discovery and analysis of inflammatory disease–related genes using cDNA microarrays. Proc. Natl Acad. Sci. USA 94, 2150–2155 (1997).

    Article  CAS  Google Scholar 

  11. Wodicka, L., Dong, H., Mittmann, M., Ho, M.H. & Lockhart, D.J. Genome–wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359 –1367 (1997).

    Article  CAS  Google Scholar 

  12. Lockhart, D.J. et al. Expression monitoring by hybridization to high–density oligonucleotide arrays [see comments]. Nature Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  13. Cho, R.J. et al. A genome–wide transcriptional analysis of the mitotic cell cycle. Mol. Cell. 2, 65– 73 (1998).

    Article  CAS  Google Scholar 

  14. Cole, K.A., Krizman, D.B. & Emmert–Buck, M.R. The genetics of cancer—a 3D model. Nature Genet. 21, 38–41 (1999).

    Article  CAS  Google Scholar 

  15. Kallioniemi, A. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818 –821 (1992).

    Article  CAS  Google Scholar 

  16. Schutze, K. & Lahr, G. Identification of expressed genes by laser–mediated manipulation of single cells [In Process Citation]. Nature Biotechnol. 16, 737–742 (1998).

    Article  CAS  Google Scholar 

  17. Emmert–Buck, M.R. et al. Laser capture microdissection [see comments]. Science 274, 998–1001 ( 1996).

    Article  Google Scholar 

  18. Simone, N.L., Bonner, R.F., Gillespie, J.W., Emmert–Buck, M.R. & Liotta, L.A. Laser–capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14, 272–276 (1998).

    Article  CAS  Google Scholar 

  19. Adams, M. et al. Complementary DNA sequencing: expressed sequence tags and Human Genome Project. Science 252, 1651– 1656 (1991).

    Article  CAS  Google Scholar 

  20. Lennon, G., Auffray, C., Polymeropoulos, M. & Soares, M.B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics 33, 151– 152 (1996).

    Article  CAS  Google Scholar 

  21. Pietu, G. et al. Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. Genome Res. 6, 492–503 ( 1996).

    Article  CAS  Google Scholar 

  22. Bishop, J.O., Morton, J.G., Rosbash, M. & Richardson, M. Three abundance classes in HeLa cell messenger RNA. Nature 250, 199–204 (1974).

    Article  CAS  Google Scholar 

  23. Hastie, N. & Bishop, J. The expression of three abundance classes of messenger RNA in mouse tissues. Cell 9, 761–774 (1976).

    Article  CAS  Google Scholar 

  24. Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268–1272 ( 1997).

    Article  CAS  Google Scholar 

  25. Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R. & Lockhart, D.J. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24 (1999).

    Article  CAS  Google Scholar 

  26. Drmanac, S. et al. Accurate sequencing by hybridization for DNA diagnostics and individual genomics. Nature Biotechnol. 16, 54–58 (1998).

    Article  CAS  Google Scholar 

  27. Strezoska, Z. et al. DNA sequencing by hybridization: 100 bases read by a non–gel–based method. Proc. Natl Acad. Sci. USA 88, 10089 –10093 (1991).

    Article  CAS  Google Scholar 

  28. Drmanac, R. et al. DNA sequence determination by hybridization: a strategy for efficient large–scale sequencing. Science 260 , 1649–1652 (1993) [published erratum appears in Science 163, 596 (1994 )].

    Article  Google Scholar 

  29. Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P. & Trent, J. Expression profiling using cDNA microarrays. Nature Genet. 21, 10–14 (1999).

    Article  CAS  Google Scholar 

  30. Cheung, V.G. et al. Making and reading microarrays. Nature Genet. 21, 15–19 (1999).

    Article  CAS  Google Scholar 

  31. Ermolaeva, O. et al. Data management and analysis for gene expression arrays. Nature Genet. 20, 19–23 (1998).

    Article  CAS  Google Scholar 

  32. Bassett, D.E. Jr, Eisen, M.B. & Boguski, M.S. Gene expression informatics—it's all in your mine. Nature Genet. 21, 51– 55 (1999).

    Article  CAS  Google Scholar 

  33. Weinstein, J.N. et al. An information–intensive approach to the molecular pharmacology of cancer. Science 275, 343– 349 (1997).

    Article  CAS  Google Scholar 

  34. Kahn, P. From genome to proteome: looking at a cell's proteins [news]. Science 270, 369–370 ( 1995).

    Article  CAS  Google Scholar 

  35. Shevchenko, A. et al. Linking genome and proteome by mass spectrometry: large–scale identification of yeast proteins from two dimensional gels. Proc. Natl Acad. Sci. USA 93, 14440–14445 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank R. Dickins and E. Sloan for many useful comments during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowtell, D. Options available — from start to finish — for obtaining expression data by microarray. Nat Genet 21 (Suppl 1), 25–32 (1999). https://doi.org/10.1038/4455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/4455

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing