Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Can stem cells cross lineage boundaries?

Stem cells have traditionally been characterized as either embryonic (pluripotent) or organ-specific. Recent work suggests that the latter can "transdifferentiate" into other cell types, carrying significant implications for possible clinical use of these cells. Here the authors critically examine the existing data, and suggest standards for the evaluation of these and future studies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The totipotent zygote is formed from the sperm and egg.

References

  1. Wu, A., Till, J., Siminovitch, L. & McCulloch, E. Cytological evidence for a relationship between normal hematopoietic colony-forming cells and cells of the lymphoid system. J. Exp. Med. 127, 455–467 (1968).

    Article  CAS  Google Scholar 

  2. Morrison, S.J., Shah, N.M. & Anderson, D.J. Regulatory mechanisms in stem cell biology. Cell 88, 287–298 (1997).

    Article  CAS  Google Scholar 

  3. Fuchs, E. & Segre, J.A. Stem cells: A new lease on life. Cell 100, 143–155 (2000).

    Article  CAS  Google Scholar 

  4. Watt, F.M. Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353, 831–837 (1998).

    Article  CAS  Google Scholar 

  5. Watt, F.M. & Hogan, B.L. Out of Eden: Stem cells and their niches. Science 287, 1427–1430 (2000).

    Article  CAS  Google Scholar 

  6. Weissman, I.L. Translating stem and progenitor cell biology to the clinic: Barriers and Opportunities. Science 287, 1442–1446 (2000).

    Article  CAS  Google Scholar 

  7. Morrison, S.J., White, P.M., Zock, C. & Anderson, D.J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749 (1999).

    Article  CAS  Google Scholar 

  8. Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. 97, 14720–14725 (2000).

    Article  CAS  Google Scholar 

  9. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  10. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998).

    Article  CAS  Google Scholar 

  11. Bjornson, C.R.R., Rietze, R.L., Reynolds, B.A., Magli, M.C. & Vescovi, A.L. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537 (1999).

    Article  CAS  Google Scholar 

  12. Morrison, S.J. Stem cell potential: Can anything make anything? Curr. Biol. 11, R7–R9 (2000).

    Article  Google Scholar 

  13. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999).

    CAS  Google Scholar 

  14. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate to hepatocytes in vivo. Nature Med. 6, 1229–1234 (2000).

    Article  CAS  Google Scholar 

  15. Galli, R. et al. Skeletal myogenic potential of human and mouse neural stem cells. Nature Neurosci. 3, 986–991 (2000).

    Article  CAS  Google Scholar 

  16. Clarke, D.L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  CAS  Google Scholar 

  17. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  Google Scholar 

  18. Palmer, T.D., Markakis, E.A., Willhoite, A.R., Safar, F. & Gage, F.H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. Neurosci. 19, 8487–8497 (1999).

    Article  CAS  Google Scholar 

  19. Donovan, P.J. Growth factor regulation of mouse primordial germ cell development. Curr. Topics Dev. Biol. 29, 189–225 (1994).

    Article  CAS  Google Scholar 

  20. Matsui, Y., Zsebo, K. & Hogan, B.L.M. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.J.A. is an Investigator of the Howard Hughes Medical Institute; F.H.G. is supported by the National Institutes of Health and I.J.W. is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D., Gage, F. & Weissman, I. Can stem cells cross lineage boundaries?. Nat Med 7, 393–395 (2001). https://doi.org/10.1038/86439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/86439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing