Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

DNA chips: State-of-the art

Abstract

The technology and applications of microarrays of immobilized DNA or oligonucleotides are reviewed. DNA arrays are fabricated by high-speed robotics on glass or nylon substrates, for which labeled probes are used to determine complementary binding allowing massively parallel gene expression and gene discovery studies. Oligonucleotide microarrays are fabricated either by in situ light-directed combinatorial synthesis or by conventional synthesis followed by immobilization on glass substrates. Sample DNA is amplified by the polymerase chain reaction (PCR), and a fluorescent label is inserted and hybridized to the microarray. This technology has been successfully applied to the simultaneous expression of many thousands of genes and to large-scale gene discovery, as well as polymorphism screening and mapping of genomic DNA clones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Southern, E.M. 1996. DNA chips: analysing sequence by hybridization to oligonucleotides on a large scale. Trends Genet. 12(3):110–115.

    Article  CAS  PubMed  Google Scholar 

  2. O'Donnell-Maloney, M.J., Smith, C.L., and Cantor, C.C., 1996. The development of microfabricated arrays for DNA sequencing and analysis. Trends Biotech. 14: 401–407.

    Article  CAS  Google Scholar 

  3. Ginot, F. 1997. Oligonucleotide microarrays for identification of unknown mutations: how far from reality? Human Mutation 10: 1–10.

    Article  CAS  PubMed  Google Scholar 

  4. Drmanac, R., Drmanac, S., Labat, I., Crkvenjakov, R., Vicentric, A., and Gemmell, A. 1992. Sequencing by hybridization: towards an automated sequencing of one million M13 clones arrayed on membranes. Electrophoresis 13: 566–573.

    Article  CAS  PubMed  Google Scholar 

  5. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.

    Article  CAS  PubMed  Google Scholar 

  6. Wallraff, G., Labadie, J., Brock, P., DiPietro, R., Nguyen, T., Huynh, T., et al. 1997. DNA sequencing on a chip. Chemtech February, pp.22–32.

  7. Schena, M. 1996. Genome analysis with gene expression microarrays. Bioessays 18: 427–431.

    Article  CAS  PubMed  Google Scholar 

  8. Shalon, D., Smith, J.S., and Brown, P.O. 1996. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6: 639–645.

    Article  CAS  PubMed  Google Scholar 

  9. Drmanac, S., Stavropoulos, N.A., Labat, I., Vonau, J., Hauser, B., Soares, M.B., and Drmanac, R. 1996. Gene-representing cDNA clusters defined by hybridization of 57,419 clones from infant brain libraries with short oligonucleotide probes. Genomics 37: 29–40.

    Article  CAS  PubMed  Google Scholar 

  10. Drmanac, S. and Drmanac, R. 1994. Processing of cDNA and genomic kilobase-size clones for massive screening, mapping and sequencing by hybridization. BioTechniques 17: 328–336.

    CAS  PubMed  Google Scholar 

  11. Milosavljevic, A., Savkovic, S., Crkvenjakov, R., Salbego, D., Serrato, H., Kreuzer, H., et al. 1996. DNA sequence recognition by hybridization to short oligomers: experimental verification of the method on the E. coli genome. Genomics 37: 77–86.

    Article  CAS  PubMed  Google Scholar 

  12. Fodor, S.P.A., Read, L.J., Pirrung, M.C., Stryer, L., Lu, A.M., and Solas, D. 1991. Light-directed, spatially addressable parallel chemical synthesis. Science 251: 767–773.

    Article  CAS  PubMed  Google Scholar 

  13. Pease, A.N., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., and Fodor, S.P.A. 1994. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91: 5022–5026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hacia, G.H., Brody, L.C., Chee, M.S., Fodor, S.P.A., and Collins, F.S. 1996. Detection of heterozygous mutations in BRCA1 using high-density oligonucleotide arrays and two color fluorescence analysis. Nat. Genet. 14: 441–447.

    Article  CAS  PubMed  Google Scholar 

  15. McGall, G., Labadie, J., Brook, P., Wallraff, G., Nguyen, T., and Hinsberg, W. 1996. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc. Nat. Acad. Sci. USA 93: 13555–13560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yershov, K., Barsky, V., Belgovskiy, A., Kirillov, E., Kreindlin, E., Ivanov, I, et al. 1996. DNA analysis and diagnostics on oligonucleotide chips. Genetics 93: 4913–4918.

    CAS  Google Scholar 

  17. Heller, M.J. and Tu, E. 1993. Active programmable electronic devices for molecular biomolecules. US Pat. 5605662.

  18. DeRisi, J.L., Iyer, V.R., and Brown, P.O. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 270: 680–686.

    Article  Google Scholar 

  19. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P.O., and Davis, R.O. 1996. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc .Nat Acad. Sci. USA 93: 10614–10619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heller, R.N., Schena, M., Chai, A., Shalon, D., Bedilion, T., Gilmore, J., et al. 1997. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl. Acad. Sci. USA 94: 2150–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., et al. 1996. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14: 457–460.

    Article  CAS  PubMed  Google Scholar 

  22. Iyer, V., DeRisi, J., Eisen, M., Ross, D., Spellman, P., Hudson, J. Jr., et al. 1997. Use of DNA microarrays to monitor differential gene expression in yeast and humans. Fed. Am. Soc. Exp. Bio. 11: 1126.

    Google Scholar 

  23. Wodicka, L., Dong, H., Mittmann, M., Ho, M-H., and Lockhart, D.J. 1997. Genome-wide expression monitoring in Saccharomyces cerevisiae. Bio/Technology 15: 1–15.

    Google Scholar 

  24. Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., et al. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Bio/Technology 14: 1675–1680.

    CAS  Google Scholar 

  25. De Saizieu, A., Certa, U., Warrington, J., Gray, C., Keck, W. and Mous, J. 1998. Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays. Bio/Technology 16: 45–48.

    CAS  Google Scholar 

  26. Stipp, D. 1997. Gene chip breakthrough. Fortune 3/31: 56–73.

    Google Scholar 

  27. Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittmann, M., and Davis, R.W. 1996. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat. Genet. 14: 450–456.

    Article  CAS  PubMed  Google Scholar 

  28. Lipshutz, R.J., Morris, D., Chee, M., Hubbell, E., Kozal, M.J., Shah, N., et al. 1995. Using oligonucleotide probe arrays to access genetic diversity. Biotechniques 19: 442–447.

    CAS  PubMed  Google Scholar 

  29. Kozal, M.J., Shah, N., Shen, N., Yang, R., Fucini, R., Merigan, T.C., et al. 1996. Extensive polymorphism observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays. Nature Medicine 2: 753–759.

    Article  CAS  PubMed  Google Scholar 

  30. Cronin, M.T., Fucini, R.V., Kim, S.M., Masino, R.S., Wespi, R.M., and Miyada, C.G. 1996. Cystic fibrosis mutation detection by hybridization to light-generated DNA probe arrays. Human Mut. 7: 244–255.

    Article  CAS  Google Scholar 

  31. Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D., et al. 1996. Accessing genetic information with high-density DNA arrays. Science 274: 610–613.

    Article  CAS  PubMed  Google Scholar 

  32. McIntyre, P.E. 1996. Microfabrication technology for DNA sequencing. Trends Biotech. 14: 69–73.

    Article  CAS  Google Scholar 

  33. Sosnowski, R.G., Tu, E., Butler, W.F., O'Connell, J.P., and Heller, M.J. 1997. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Wat. Acad. Sci. USA 94: 1119–1123.

    Article  CAS  Google Scholar 

  34. Sapolsky, R.J. and Lipshutz, R.J. 1996. Mapping genomic library clones using oligonucleotide arrays. Genomics 33: 445–456.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsay, G. DNA chips: State-of-the art. Nat Biotechnol 16, 40–44 (1998). https://doi.org/10.1038/nbt0198-40

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0198-40

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing