Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury

Abstract

The discovery that some cases of familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) has focused much attention on the function of SOD1 as related to motor neuron survival. Here we describe the creation and characterization of mice completely deficient for this enzyme. These animals develop normally and show no overt motor deficits by 6 months in age. Histological examination of the spinal cord reveals no signs of pathology in animals 4 months in age. However Cu/Zn SOD–deficient mice exhibit marked vulnerability to motor neuron loss after axonal injury. These results indicate that Cu/Zn SOD is not necessary for normal motor neuron development and function but is required under physiologically stressful conditions following injury.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fridovich, I. Superoxide dismutases: an adaptation to a paramagnetic gas. J.Biol. Chem. 264, 7761–7764 (1989).

    CAS  PubMed  Google Scholar 

  2. McCord, J.M. Human disease, free radicals and the oxidant/antioxiant balance. Clin. BioChem. 26, 351–357 (1993).

    Article  CAS  Google Scholar 

  3. Beyer, W., Imlay, J. & Fridovich, I. Superoxide dismutases. Prog. Nucl. Acid Res. Mol. Biol. 40, 221–253 (1991).

    Article  CAS  Google Scholar 

  4. Bilinski, T., Krawiec, Z., Liczmanski, A. & LJtwinska, J. Is hydroxyl radical generated by the Fenton reaction in vivo?. Biochem. Biophys. Res. Commun. 130, 533 (1985).

    Article  CAS  Google Scholar 

  5. Phillips, J.P., Campbell, S.D., Michaud, D., Charbonneau, M. & Hilliker, A.J. Null mutation of copper/zinc Superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. USA. 86, 2761–2765 (1989).

    Article  CAS  Google Scholar 

  6. Li, Y. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genet. 11, 376–381 (1995).

    Article  CAS  Google Scholar 

  7. Rosen, D.R. et al.Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  Google Scholar 

  8. Deng, H.-X. et al.Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261, 1047–1051 (1993).

    Article  CAS  Google Scholar 

  9. Bowling, A.C., Brown, R.H. & Beal, M.F. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 61, 2322–2325 (1993).

    Article  CAS  Google Scholar 

  10. Borchelt, D.R. et al.Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. USA 91, 8298–8296 (1994).

    Article  Google Scholar 

  11. Gurney, M.E. et al.Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  Google Scholar 

  12. Wong, P.C. et al.An adverse property of a familial ALS-linked by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  Google Scholar 

  13. Carlioz, A. & Touati, D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBOJ. 5, 623–630 (1986).

    Article  CAS  Google Scholar 

  14. Marklund, S.L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 222, 649–655 (1984).

    Article  CAS  Google Scholar 

  15. Wiedau-Pazos, M. et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271, 515–518 (1996).

    Article  CAS  Google Scholar 

  16. Beckman, J.S., Chen, J., Crow, J.R. & Ye, Y.Z. Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog. Brain Res. 103, 371–380 (1994).

    Article  CAS  Google Scholar 

  17. Reaume, A.G. et al. Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831–1833 (1995).

    Article  CAS  Google Scholar 

  18. Wood, S.A., Alien, N.D., Rossant, J., Auerbach, A. & Nagy, A. Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365, 87–69 (1993).

    Article  CAS  Google Scholar 

  19. Paoletti, F., Aldinucci, D., Mocali, A. & Caparrini, A. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154, 536–541 (1986).

    Article  CAS  Google Scholar 

  20. Levine, R.L., Williams, J.A., Stadtman, E.R. & Shacter, E. Carbonyl assays for determination of oxidatively modified proteins. Meth. Enz. 233, 346–357 (1994).

    Article  CAS  Google Scholar 

  21. Griffith, O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207–212 (1980).

    Article  CAS  Google Scholar 

  22. Yan, Q., Elliott, J.L. & Snider, W.D. Brain-derived neurotrophic factor (BDNF) rescues spinal motoneurons from axotomy-induced cell death. Nature 360, 753–755 (1992).

    Article  CAS  Google Scholar 

  23. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–362 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reaume, A., Elliott, J., Hoffman, E. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13, 43–47 (1996). https://doi.org/10.1038/ng0596-43

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0596-43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing