Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver

Abstract

Fas, a type I membrane protein that transduces an apoptotic signal, is expressed in lymphocytes as well as in various tissues such as the liver, lung and heart. The mouse lymphoproliferation (lpr) mutation is a leaky mutation in Fas. By means of gene targeting, we generated a mouse strain which is completely deficient in Fas. In addition to the massive production of lymphocytes, the Fas–null mice showed substantial liver hyperplasia, which was accompanied by the enlargement of nuclei in hepatocytes. The Fas system seems to play a role in the apoptotic process to maintain homeostasis of the liver as well as the peripheral lymphoid organs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ellis, R.E., Yuan, J. & Horvitz, H.R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–698 (1991).

    Article  CAS  Google Scholar 

  2. Raff, M.C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).

    Article  CAS  Google Scholar 

  3. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243 (1991).

    Article  CAS  Google Scholar 

  4. Oehm, A. et al. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily: sequence identity with the Fas antigen. J. biol. Chem. 267, 10709–10715 (1992).

    CAS  Google Scholar 

  5. Watanabe-Fukunaga, R. et al. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J. Immunol. 148, 1274–1279 (1992).

    CAS  PubMed  Google Scholar 

  6. Suda, T., Takahashi, T., Golstein, R. & Nagata, S. Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    Article  CAS  Google Scholar 

  7. Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. exp. Med. 169, 1747–1756 (1989).

    Article  CAS  Google Scholar 

  8. Trauth, B.C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).

    Article  CAS  Google Scholar 

  9. Suda, T. et al. Expression of the Fas ligand in T-cell-lineage. J. Immunol. 154, 3806–3813 (1995).

    CAS  PubMed  Google Scholar 

  10. Vignaux, F. et al. TCR/CD3 coupling to Fas-based cytotoxicity. J. exp. Med. 181, 781–786 (1995).

    Article  CAS  Google Scholar 

  11. Kägi, D. et al. Fas and perforin pathway as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528–530 (1994).

    Article  Google Scholar 

  12. Lowin, B., Hahne, M., Mattmann, C. & Tschopp, J. T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370, 650–652 (1994).

    Article  CAS  Google Scholar 

  13. Rouvier, E., Luciani, M.-F. & Golstein, R. Fas involvement in Ca2+− independent T cell-mediated cytotoxicity. J. exp. Med. 177, 195–200 (1993).

    Article  CAS  Google Scholar 

  14. Alderson, M.R. et al. Fas ligand mediates activation-induced cell death in human T lymphocytes. J. exp. Med. 181, 71–77 (1995).

    Article  CAS  Google Scholar 

  15. Ju, S.-T. et al. Fas (CD95)/FasL interaction required for programmed cell death after T-cell activation. Nature 373, 444–448 (1995).

    Article  CAS  Google Scholar 

  16. Russell, J.H., Rush, B., Weaver, C. & Wang, R. Mature T cells of autoimmune Ipr/lprmice have a defect in antigen-stimulated suicide. Proc. natn. Acad. Sci. U.S.A. 90, 4409–4413 (1993).

    Article  CAS  Google Scholar 

  17. Singer, G.G. & Abbas, A.K., Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1, 365–371 (1994).

    Article  CAS  Google Scholar 

  18. Nagata, S. & Suda, T. Fas and Fas ligand: Ipr and gld mutations. Immunol. Today 16, 39–43 (1995).

    Article  CAS  Google Scholar 

  19. Nagata, S. & Golstein, P., Fas death factor. Science 267, 1449–1456 (1995).

    Article  CAS  Google Scholar 

  20. Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of Ipr mice. Proc. natn. Acad. Sci. U.S.A. 90, 1756–1760 (1993).

    Article  CAS  Google Scholar 

  21. Kobayashi, S., Hirano, T., Kakinuma, M. & Uede, T. Transcriptional repression and differential splicing of Fas mRNA by early transposon (ETn) insertion in autoimmune LPR mice. Biochem. biophys. Res. Commun. 191, 617–624 (1993).

    Article  CAS  Google Scholar 

  22. Chu, B.J.-L., Drappa, J., Parnassa, A. & Elkon, K.B. The defect in Fas mRNA expression in MRL/Ipr mice is associated with insertion of the retrotransposon, ETn. J. exp. Med. 178, 723–730 (1993).

    Article  CAS  Google Scholar 

  23. Wu, J., Zhou, T., He, J. & Mountz, J.D. Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J. exp. Med. 178, 461–468 (1993).

    Article  CAS  Google Scholar 

  24. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  CAS  Google Scholar 

  25. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994).

    Article  CAS  Google Scholar 

  26. Mariani, S.M., Matiba, B., Armandola, E.A. & Krammer, R.H., APO-1/Fas (CD95) receptor is expressed in homozygous MRL/lpr mice. Eur. J. Immunol. 24, 3119–3123 (1994).

    Article  CAS  Google Scholar 

  27. Cohen, R.L. & Eisenberg, R.A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269 (1991).

    Article  CAS  Google Scholar 

  28. Ni, R. et al. Fas-mediated apoptosis in primary cultured mouse hepatocytes. Exp. Cell Res. 215, 332–337 (1995).

    Article  Google Scholar 

  29. Ogasawara, J. et al. Lethal effect of the anti-Fas antibody in mice. Nature 364, 806–809 (1993).

    Article  CAS  Google Scholar 

  30. Itoh, N. & Nagata, S. A novel protein domain required for apoptosis: mutational analysis of human Fas antigen. J. biol. Chem. 268, 10932–10937 (1993).

    CAS  Google Scholar 

  31. Yagi, T. et al. A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Anal. Biochem. 214, 77–86 (1993).

    Article  CAS  Google Scholar 

  32. Izui, S. et al. Induction of various autoantibodies by mutant gene Ipr in several strains of mice. J. Immunol. 133, 227–233 (1984).

    CAS  PubMed  Google Scholar 

  33. Ogasawara, J., Suda, T. & Nagata, S. Selective apoptosis of CD4+ CD8+ thymocytes by the anti-Fas antibody. J. exp. Med. 181, 485–491 (1995).

    Article  CAS  Google Scholar 

  34. Tanaka, M., Suda, T., Takahashi, T. & Nagata, S. Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBO J. 14, 1129–1135 (1995).

    Article  CAS  Google Scholar 

  35. Benedetti, A., Jezequel, A.M. & Orlandi, F. Preferential distribution of apoptotic bodies in acinar zone 3 of normal human and rat liver. J. Hepatol. 7, 319–324 (1988).

    Article  CAS  Google Scholar 

  36. Benedetti, A., Jezequel, A.M. & Orlandi, F. A quantitative evaluation of apoptotic bodies in rat liver. Liver 8, 172–177 (1988).

    Article  CAS  Google Scholar 

  37. Arber, N., Zajicek, G. & Ariel, I. The streaming liver II. Hepatocyte life history. Liver 8, 80–87 (1988).

    Article  CAS  Google Scholar 

  38. Andrew, W., Brown, H.M. & Johnson, J.B. Senile changes in the liver of mouse and man. Am. J. Anat. 72, 199–221 (1943).

    Article  Google Scholar 

  39. Epstain, C.J. & Andrew, W. Nuclear ploidy in mammalian parenchyma! liver cells. Nature 214, 1050–1051 (1967).

    Article  Google Scholar 

  40. McWhir, J., Selfridge, J., Harrison, D.J., Squires, S. & Melton, D.W. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Alaftlre Genet. 5, 217–224 (1993).

    CAS  Google Scholar 

  41. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  Google Scholar 

  42. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  CAS  Google Scholar 

  43. Tanaka, T. et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 353–361 (1995).

    Article  CAS  Google Scholar 

  44. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

  45. Palmiter, R.D. et al. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50, 435–443 (1987).

    Article  CAS  Google Scholar 

  46. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  Google Scholar 

  47. MacMahon, A.R. & Bradley, A., The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1037–1058 (1990).

    Google Scholar 

  48. Laird, R.W. et al. Simplified mammalian DNA isolation procedure. Nucl. Acids. Res. 19, 4293 (1991).

    Article  CAS  Google Scholar 

  49. Ando, K. et al. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J. exp. Med. 178, 1541–1554 (1993).

    Article  CAS  Google Scholar 

  50. Watanabe, T., Katsura, Y., Yoshitake, A., Masataki, H. & Mori, T. IPAP: Image processor for analytical pathology. J. Toxicol. Pathol. 7, 353–361 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, M., Suematsu, S., Kondo, T. et al. Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat Genet 11, 294–300 (1995). https://doi.org/10.1038/ng1195-294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1195-294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing