Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the human Sonic Hedgehog gene cause holoprosencephaly

Abstract

Holoprosencephaly (HPE) is a common developmental defect of the forebrain and frequently the midface in humans, with both genetic and environmental causes. HPE has a prevalence of 1:250 during embryogenesis and 1:16,000 newborn infants, and involves incomplete development and septation of midline structures in the central nervous system (CMS) with a broad spectrum of clinical severity1–3. Alobar HPE, the most severe form which is usually incompatible with postnatal life, involves complete failure of division of the forebrain into right and left hemispheres and is characteristically associated with facial anomalies including cyclopia, a primitive nasal structure (proboscis) and/or midfacial clefting. At the mild end of the spectrum, findings may include microcephaly, mild hypotelorism, single maxillary central incisor and other defects (Fig. 1). This phenotypic variability also occurs between affected members of the same family. The molecular basis underlying HPE is not known, although teratogens, non-random chromosomal anomalies, and familial forms with autosomal dominant and recessive inheritance have been described4. HPE3 on chromosome 7q36 is one of at least four different loci implicated in HPE5–9. Here, we report the identification of human Sonic Hedgehog (SHH) as HPE3 — the first known gene to cause HPE. Analyzing 30 autosomal dominant HPE (ADHPE) families, we found five families that segregate different heterozygous SHH mutations. Two of these mutations predict premature termination of the SHH protein, whereas the others alter highly conserved residues in the vicinity of the alpha-helix-1 motif or signal cleavage site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohen, M.M. Jr., Perspectives on holoprosencephaly, Part I. Epidemiology, genetics, and syndromology. Teratology 40, 211–235 (1989).

    Article  PubMed  Google Scholar 

  2. Cohen, M.M.,Jr. Perspectives on holoprosencephaly, Part III. Spectra, distinctions, continuities, and discontinuities. Am. J. Med. Genet. 34, 271–288 (1989).

    Article  PubMed  Google Scholar 

  3. Cohen, M.M.,Jr. & Sulik, K.K. Perspectives on holoprosencephaly. Part II. Central nervous system, craniofacial anatomy, syndrome commentary, diagnostic approach, and experimental studies. J. Craniofac. Genet. Dev. Biol. 12, 196–244 (1992).

    PubMed  Google Scholar 

  4. Muenke, M. Holoprosencephaly as a genetic model for normal craniofacial development. Sem. Dev. Biol. 5, 293–301 (1994).

    Article  Google Scholar 

  5. Muenke, M. et al. Linkage of a human malformation, familial holoprosencephaly, to chromosome 7 and evidence for genetic heterogeneity. Proc. Nat Acad. Sci. U.S.A. 91, 8102–8106 (1994).

    Article  CAS  Google Scholar 

  6. Muenke, M. et al. Physical mapping of the holoprosencephaly critical region in 21q22.3, exclusion of SIM2 as a candidate gene for holoprosencephaly, and mapping of SIM2 to a region of chromosome 21 important for Down syndrome. Am. J. Hum. Genet. 57, 1074–1079 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schell, U. et al. Molecular characterization of breakpoints in patients with holoprosencephaly and definition of the HPE2 critical region 2p21. Hum. Mol. Genet. 5, 223–229 (1995).

    Article  Google Scholar 

  8. Gurrieri, F. et al. Physical mapping of the holoprosencephaly critical region of 7q36. Nature Genet. 3, 247–251 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Overhauser, J. et al. Physical mapping of the holoprosencephaly critical region in 18p11.3. Am. J. Hum. Genet. 57, 1080–1085 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Belloni, E. et al. Identification of Sonic Hedgehog as a canddiate gene for holoprosencephaly. Nature Genet. 14, 353–356 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Marigo, V. et al. Cloning, expression, and chromosomal location of SHH and IHH: two human homologues of the Drosophila segment polarity gene Hedgehog. Genomics 28, 44–51 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  PubMed  Google Scholar 

  13. Lee, J.J., von Kessler, D.P., Parks, S. & Beachy, P.A. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation Gene hedgehog. Cell 71, 33–50 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Ekker, S.C. et al. Distinct expression and shared activities of members of the hedgehog gene of Xenopus laevis. Development 121, 2337–2347 (1995).

    CAS  PubMed  Google Scholar 

  15. Riddle, R.D., Johnson, R.L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Roelink, H. et al. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775 (1995).

    Article  Google Scholar 

  18. Krauss, S., Concordet, J.P. & Ingham, P.W. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431–1444 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Fan, C.-M., Porter, J.A., Chiang, C., Chang, D.T., Beachy, P.A. & Tessier-Lavigne, M. Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signalling pathway. Cell 81, 457–465 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Tanabe, Y., Roelink, H. & Jessell, T.M. Induction of motor neurons by Sonic hedgehog independent of floor plate differentiation. Curr. Biol. 5, 651–658 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Fietz, M.J., Jacinto, A., Taylor, A.M., Alexandre, C. & Ingham, P.W. Secretion of the amino-terminal fragment of the Hedgehog protein is necessary and sufficient for hedgehog signalling in Drosophila. Curr. Biol. 5, 643–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Porter, J.A. et al. The product of hedgehog autoproteolytic cleavage is active in local and long-range signalling. Nature 374, 363–366 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Marti, E., Bumcrot, D.A., Takada, R. & McMahon, A.P. Requirement of the 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Ericson, J., Muhr, J., Piaczek, M., Lints, T., Jessell, T.M. & Edlund, T. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Johnson, R.L., Laufer, E., Riddle, R.D. & Tabin, C. Ectopic expression of Sonic hedgehog alters dorsal-ventral patterning of somites. Cell 79, 1165–1173 (1994).

    Article  PubMed  Google Scholar 

  26. Huang, Z. & Krauss, S. Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86, 411–122 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Macdonald, R., Barth, K.A., Xu, Q., Holder, N., Mikkola, I. & Wilson, S.W. Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121, 3267–3278 (1995).

    CAS  PubMed  Google Scholar 

  28. Hall, T.M.T., Porter, J.A., Beachy, P.A. & Leahy, D.J. A potential catalytic site revealed by the 1.7-A crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature 378, 212–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of Sonic hedgehog autoproteolysis. Cell 81, 445–455 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Hatta, K., Kimmel, C.B., Ho, R.K. & Walker, C. The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature 350, 339–341 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Schulte-Merker, S. van Eeden, F.J.M., Halpern, M.E., Kimmel, C.B. & Nüsslein-Volhard, C. No tail (nt) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1994).

    CAS  PubMed  Google Scholar 

  33. Lynch, S.A. et al. A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nature Genet. 11, 93–95 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Hammerschmidt, M., Bitgood, M.J. & McMahon, A.P. Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes & Devel. 10, 647–658 (1996).

    Article  CAS  Google Scholar 

  35. Muenke, M. et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet. 8, 269–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Ardinger, H.H. & Bartley, J.A. Microcephaly in familial holoprosencephaly. J. Craniofac. Genet. Dev. Biol. 8, 53–61 (1988).

    CAS  PubMed  Google Scholar 

  37. Johnson, V.P. Holoprosencephaly: a developmental field defect. Am J. Med. Genet. 34, 258–264 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Muenke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roessler, E., Belloni, E., Gaudenz, K. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 14, 357–360 (1996). https://doi.org/10.1038/ng1196-357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1196-357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing