Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells

Abstract

Prions are thought to consist of infectious proteins that cause transmissible spongiform encephalopathies1. According to overwhelming evidence, the pathogenic prion protein PrPSc converts its host encoded isoform PrPc into insoluble aggregates of PrPSc, concomitant with pathological modifications (for review, see refs. 1–3). Although the physiological role of PrPc is poorly understood4, studies with PrP knockout mice demonstrated that PrPc is required for the development of prion diseases5. Using the yeast two-hybrid technology in Saccharomyces cerevisiae, we identified the 37-kDa laminin receptor precursor (LRP) as interacting with the cellular prion protein PrPc. Mapping analysis of the LRP–PrP interaction site in S. cerevisiae revealed that PrP and laminin share the same binding domain (amino acids 161 to 180)6 on LRP. The LRP–PrP interaction was confirmed in vivo in insect (Sf9) and mammalian cells (COS-7). The LRP level was increased in scrapie-infected murine N2a cells and in brain and spleen of scrapie-infected mice. In contrast, the LRP concentration was not significantly altered in these organs from mice infected with the bovine spongiform encephalopathic agent (BSE), which have a lower PrPSc accumulation. LRP levels, however, were dramatically increased in brain and pancreas, slightly increased in the spleen and not altered in the liver of scrapie-infected hamsters. These data show that enhanced LRP concentrations are correlated with PrPSc accumulation in organs from mice and hamsters. The laminin receptor precursor, which is highly conserved among mammals and is located on the cell surface, may act as a receptor or co-receptor for the prion protein on mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Prusiner, S.B. Molecular biology of prion diseases. Science 252, 1515–1522 (1991).

    Article  CAS  Google Scholar 

  2. Weissmann, C. Molecular biology of prion diseases. Trends Cell. Biol. 4, 10–14 (1994).

    Article  CAS  Google Scholar 

  3. Edenhofer, F., Weiss, S., Winnacker, E.-L. & Famulok, M. Chemistry and molecular biology of transmissible spongiform encephalopathies. Angew. Chem. Int. Ed. Engl. 36, 1674–1694 (1997).

    Article  Google Scholar 

  4. Borchelt, D.R. & Sisodia, S.S. Loss of functional prion protein: A role in prion disorders? Chem. Biol. 3, 619–621 (1996).

    Article  CAS  Google Scholar 

  5. Bueler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  CAS  Google Scholar 

  6. Castronovo, V., Taraboletti, G. & Sobel, M.E. Functional domains of the 67-kDa laminin receptor precursor. J. Biol. Chem. 266, 20440–6 (1991).

    CAS  PubMed  Google Scholar 

  7. Edenhofer, F. et al. Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J. Virol. 70, 4724–4728 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mecham, R.P. Receptors for laminin on mammalian cells. FASEB J. 5, 2538–2546 (1991).

    Article  CAS  Google Scholar 

  9. Rao, C.N. et al. Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry 28, 7476–7486 (1989).

    Article  CAS  Google Scholar 

  10. Yow, H. et al. increased mRNA expression of a laminin-binding protein in human colon carcinoma: Complete sequence of a full-length cDNA encoding the protein. Proc. Natl. Acad. Sci. USA 85, 6394–6398 (1988).

    Article  CAS  Google Scholar 

  11. Malinoff, H.L. & Wicha, M.S. Isolation of a cell surface receptor for laminin from murinefibrosarcoma cells. Biochem. Biophys. Res. Commun. 111, 804–808 (1983).

    Article  Google Scholar 

  12. Lesot, H., Kühl, U. & von der Mark, K., Isolation of a laminin binding protein from muscle cell membranes. EMBO J. 2, 861–865 (1983).

    Article  CAS  Google Scholar 

  13. Rao, N.C., Barsky, S.H., Terranova, V.P. & Liotta, L.A. Isolation of a tumor cell laminin receptor. Biochem. Biophys. Res. Commun. 111, 804–808 (1983).

    Article  CAS  Google Scholar 

  14. Castronovo, V. et al. Biosynthesis of the 67 kDa high affinity laminin receptor. Biochem. Biophys. Res. Commun. 177, 177–83 (1991).

    Article  CAS  Google Scholar 

  15. Landowski, T.H., Dratz, E.A. & Starkey, J.R. Studies of the structure of the metastasisassociated 67 kDa laminin binding protein: Fatty acid acylation and evidence supporting dimerization of the 32 kDa gene product to form the mature protein. Biochemistry 34, 11276–11287 (1995).

    Article  CAS  Google Scholar 

  16. Jackers, P. et al. Seventeen copies of the human 37-kDa laminin receptor precur-sor/p40 ribosome-associated protein gene are processed pseudogenes arisen from retropositional events. Biochim. Biophys. Acta 1305, 98–104 (1996).

    Article  Google Scholar 

  17. Jackers, P. et al. Isolation from a multigene family of the active human gene of the metastasis-associated multifunctional protein 37LRP/p40 at chromosome 3p21.3. Oncogene 13, 495–503 (1996).

    CAS  PubMed  Google Scholar 

  18. Weiss, S., Rieger, R., Edenhofer, F., Fisch, E. & Winnacker, E.-L. Recombinant prion protein rPrP27-30 from Syrian Golden hamster reveals proteinase K sensitivity. Biochem. Biophys. Res. Commun. 219, 173–179 (1996).

    Article  CAS  Google Scholar 

  19. Weiss, S. et al. Overexpression of active Syrian Golden hamster prion protein PrPc as a glutathione S-transferase fusion in heterologous systems. J. Virol. 69, 4776–4783 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Beck, K., Hunter, I. & Engel, J. Structure and function of laminin: Anatomy of a multidomain glycoprotein. FASEB J. 4, 148–160 (1990).

    Article  CAS  Google Scholar 

  21. Lasmézas, C.I. et al. Strain specific and common pathogenic events in murine models of scrapie and bovine spongiform encephalopathy. J. Gen. Virol. 77, 1601–1609 (1996).

    Article  Google Scholar 

  22. Jendroska, K. et al. Proteinase-resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity. Neurology 41, 1482–1490 (1991).

    Article  CAS  Google Scholar 

  23. Kimberlin, R.H. & Walker, C.A. Pathogenesis of scrapie (strain 263K) in hamsters infected intracerebrally, intraperitoneally or intraocularly. J. Gen. Virol. 67, 255–263 (1986).

    Article  Google Scholar 

  24. Rubenstein, R. et al. Scrapie-infected spleens: Analysis of infectivity, scrapieassociated fibrils, and protease-resistant proteins. J. Infect. Dis. 164, 29–35 (1991).

    Article  CAS  Google Scholar 

  25. Farquhar, C.F. et al. Protease-resistant PrP deposition in brain and non-central nervous system tissues of a murine model of bovine spongiform encephalopathy. J. Gen. Virol. 77, 1941–1946 (1996).

    Article  CAS  Google Scholar 

  26. Ye, X., Carp, R.I. & Kascsak, R.J. Histopathological changes in the islets of Langerhans in scrapie 139H-affected hamsters. J. Comp. Pathol. 110, 153–167 (1994).

    Article  CAS  Google Scholar 

  27. Albelda, S.M. & Buck, C.A. Integrins and other cell adhesion molecules. FASEB J. 4, 2868–2880 (1990).

    Article  CAS  Google Scholar 

  28. Hinek, A., Wrenn, D.S., Mecham, R.P. & Barondes, S.H. The elastin receptor: A galactoside binding protein. Science 239, 1539–1541 (1988).

    Article  CAS  Google Scholar 

  29. Hunter, D.D., Shah, V., Merlie, J.P. & Sanes, J.R. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338, 229–234 (1989).

    Article  CAS  Google Scholar 

  30. Wewer, U.M. et al. Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin. Proc. Natl. Acad. Sci. USA 83, 7137–7141 (1986).

    Article  CAS  Google Scholar 

  31. Keppel, E. & Schaller, H.C. A 33 kDa protein with sequence homology to the ‘laminin binding protein’ is associated with the cytoskeleton in hydra and in mammalian cells. J. Cell. Science 100, 789–797 (1991).

    CAS  PubMed  Google Scholar 

  32. Demianova, M., Formosa, T.G. & Ellis, S.R. Yeast proteins related to the p40/iaminin receptor precursor are essential components of the 40 S ribosomal subunit. J. Biol. Chem. 271, 11383–11391 (1996).

    Article  CAS  Google Scholar 

  33. Ouzounis, C., Kyrpides, N. & Sander, C. Novel protein families in archaean genomes. Nucleic Acids Res. 23, 565–570 (1995).

    Article  CAS  Google Scholar 

  34. Wang, K.-S., Kuhn, R.J., Strauss, E.G., Ou, S. & H, S.J., High affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J. Virol. 66, 4992–5001 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ludwig, G.V., Kondig, J.P. & Smith, J.F. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J. Virol. 70, 5592–5599 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Douville, P.J., Harvey, W.I. & Carbonetto, S. Isolation and partial characterization of high affinity laminin receptor in neural cells. J. Biol. Chem. 263, 14964–14969 (1988).

    CAS  PubMed  Google Scholar 

  37. Stahl, N. et al. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32, 1991–2002 (1993).

    Article  CAS  Google Scholar 

  38. Wendler, W., Altmann, H. & Winnacker, E.-L. Transcriptional activation of NFI/CTF1 depends on a sequence motif strongly related to the carboxy terminal domain of RNA polymerase II. Nucleic Acids Res. 1994, 2601–2603 (1994).

    Article  Google Scholar 

  39. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R., Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieger, R., Edenhofer, F., Lasmézas, C. et al. The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 3, 1383–1388 (1997). https://doi.org/10.1038/nm1297-1383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1297-1383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing