Molecular basis of interactions between regenerating adult rat thalamic axons and Schwann cells in peripheral nerve grafts. II. Tenascin-C

J Comp Neurol. 1995 Oct 16;361(2):210-24. doi: 10.1002/cne.903610203.

Abstract

Tenascin-C is a developmentally regulated extracellular matrix component. There is evidence that it may be involved in axon growth and regeneration in peripheral nerves. We have used in situ hybridization and immunocytochemistry to investigate the association of tenascin-C with central nervous system axons regenerating through a peripheral nerve autograft inserted into the thalamus of adult rats. Between 3 days and 4 weeks after implantation, tenascin-C immunoreactivity was increased in the grafts, first at the graft/brain interface, then in the endoneurium of the graft, and finally within the Schwann cell columns of the graft. By electron microscopy, reaction product was present around collagen fibrils and basal laminae in the endoneurium, but the heaviest deposits were found at the surface of regenerating thalamic axons within Schwann cell columns. Schwann cell surfaces were not associated with tenascin-C reaction product except where they faced the tenascin-rich basal lamina or were immediately opposite axons surrounded by tenascin-C. By 8 weeks after graft implantation tenascin-C in the endoneurium and around axons of the graft was decreased. In the brain parenchyma around the proximal part of the graft, axonal sprouts associated with tenascin-C could not be identified earlier than 2 weeks after grafting and were sparse at this stage. Larger numbers of such axons were present at 8-13 weeks after grafting and were located predominantly where the glia limitans between brain and graft appeared to be incomplete, suggesting that the tenascin-C may have penetrated the brain parenchyma from the graft. By in situ hybridization, cells expressing tenascin-C mRNA (probably Schwann cells) appeared first at the brain/graft interface 3 days after grafting and thereafter were mainly located within the grafts. Lightly labelled cells containing tenascin-C mRNA (probably glial cells) were scattered in the thalamic parenchyma both ipsilateral and contralateral to the graft and a few heavily labelled cells were located very close to the tip of the graft. These results show that regenerating adult thalamic axons, unlike regenerating peripheral axons, become intimately associated with peripheral nerve graft-derived tenascin-C, suggesting that they express a tenascin-C receptor, as many neurons do during development, and that tenascin-C derived from Schwann cells may play a role in the regenerative growth of such axons through the grafts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Axons / physiology*
  • Female
  • Nerve Regeneration*
  • Peripheral Nerves / cytology
  • Peripheral Nerves / metabolism*
  • Peripheral Nerves / transplantation*
  • Rats
  • Rats, Sprague-Dawley
  • Schwann Cells / physiology*
  • Tenascin / metabolism*
  • Thalamus / cytology
  • Thalamus / physiology*
  • Thalamus / ultrastructure

Substances

  • Tenascin