Article Text

Download PDFPDF
Signalling pathways involved in antiproliferative effects of IGFBP-3: a review
  1. R C Baxter
  1. Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Sydney, NSW 2065, Australia
  1. Dr Baxter robaxter{at}med.usyd.edu.au

Abstract

Insulin-like growth factor binding protein-3 (IGFBP-3), the major circulating carrier protein for IGFs, is also active in the cellular environment as a potent antiproliferative agent. It appears to function both by cell cycle blockade and the induction of apoptosis. Transfection of p53 negative T47D breast cancer cells to express IGFBP-3 leads to induction of the apoptotic protein bax and an increase in sensitivity to ionising radiation. IGFBP-3 can be transported to the nucleus by an importin β mediated mechanism, where it has been shown to interact with the retinoid X receptor α and possibly other nuclear elements. Expression of oncogenic ras is associated with resistance to exogenous IGFBP-3, the effect being reversible by inhibition of mitogen activated protein (MAP) kinase phosphorylation. IGFBP-3 antiproliferative signalling appears to require an active transforming growth factor β (TGF-β) signalling pathway, and IGFBP-3 stimulates phosphorylation of the TGF-β signalling intermediates Smad2 and Smad3. These recent findings all point to a complex intracellular mode of action of IGFBP-3, which will need to be better understood if anti-cancer treatments are to take advantage of the antiproliferative activity of IGFBP-3.

  • insulin-like growth factor binding protein-3
  • signalling pathway
  • apoptosis
  • transforming growth factor β

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes