Circulating human IgG autoanti-IgE antibodies in asthma patients block the binding of IgE to its high affinity receptor

S J Smith, A Galvin, I Hall, F Shakib

Abstract

Aims—To investigate the ability of circulating human IgG autoanti-IgE antibodies from asthma patients to block the binding of IgE to the α chain of the high affinity receptor (FceRI)

Methods—This involved the use of a well validated flow cytometric method to detect inhibition of FITC labelled IgE binding to a fibroblast cell line (CHK1E1) transfected with the α chain of FceRI.

Results—IgG autoanti-IgE-containing sera blocked the binding of IgE–FITC to the CHK1E1 cells. No such inhibition was demonstrable with rheumatoid sera containing autoanti-IgG (that is, rheumatoid factor) but lacking autoanti-IgE. Percentage inhibition (up to 50%) of IgE binding to the CHK1E1 cells was directly related to the titre of IgG1, but not IgG4, autoanti-IgE in the sera tested (correlation coefficient 0·66, probability 0·003).

Conclusions—The capacity of autoanti-IgE to block the binding of IgE to FceRI has important clinical implications, particularly in terms of downregulation of allergic reactions.

Keywords: Asthma, autoanti-IgE, high affinity receptor, IgE.

IgG autoanti-IgE is detectable in the serum of individuals with enhanced IgE production, namely those with allergic conditions such as asthma, and with parasitic infestations. Our investigations of the subclass profile of IgG autoanti-IgE have revealed that most of the activity is found in IgG1 and IgG4, with IgG4 displaying a disproportionately high proportion of the activity, particularly in IgE autoanti-IgE complexes.

We have shown previously that the autoantibody response in asthma patients is directed against two epitopes located within the Ce2-Ce3 interdomain region (aa301–339) and the Ce4 domain of IgE respectively. Significantly, the high affinity receptor binding site on IgE (aa330–335) is contained within one of the sequences (aa301–339) recognised by IgG autoanti-IgE. Thus an autoantibody of such epitope specificity would potentially block the binding of IgE to mast cells, thereby down-regulating the allergic release of mediators. Experimental evidence in support of this notion has recently been provided by Hellman who showed that the induction of an autoanti-IgE response in rats, by immunisation with a recombinant Ce2-Ce3 fragment, suppressed the binding of IgE to its high affinity receptor on mast cells.

The high affinity receptor for IgE (FceRI) is a tetrameric structure consisting of one α, one β, and two disulphide bonded γ polypeptide chains. Only the α chain is responsible for IgE binding. The β chain is involved in signal transduction and the γ chains facilitate correct expression and orientation of the receptor. FceRI is predominantly found on mast cells and basophils, but recent reports suggest that it may also be present on eosinophils, monocytes, and Langerhans cells.

The recent availability of a fibroblast cell line transfected with the α and γ subunits of human FceRI provides a direct system for studying the ability of human autoanti-IgE to modulate the binding of IgE to FceRI. In this study we show the ability of IgG anti-IgE-containing sera, obtained from asthma patients, to block the binding to such fibroblasts.

Methods

ANTIBODY REAGENTS

Mouse monoclonal anti-human IgE antibodies were obtained from Dr P E Brenchly, Department of Immunology, St Mary’s Hospital, Manchester, UK (clones E1 and E3) and Professor B M Stadler, Institute of Clinical Immunology, Bern, Switzerland (clones BSW17 and Le27). The plasma of an IgE myeloma patient (WT) and purified myeloma IgG protein were provided kindly by Dr D R Stanworth (Department of Immunology, University of Birmingham, UK). The mouse anti-human IgG monoclonal antibodies [anti-IgG1 (clone NL-16), anti-IgG2 (clone GOM1), anti-IgG3 (clone ZG4) and anti-IgG4 (clone GB7B)] and the alkaline phosphatase conjugated goat antimouse IgG were purchased from Oxoid-Unipath. The recombinant human IgE-Fc domains were gratefully provided by Dr B Sutton (Molecular Biology and Biophysics Group, The Randall Institute, King’s College, London, UK). The single IgE domains were expressed in E Coli and refolded; the IgE-Fc fragment (Ce2-Ce4) was expressed in NSO cells and was glycosylated as described elsewhere.

PURIFICATION OF HUMAN IgE

IgE was isolated from plasma by euglobulin precipitation and affinity chromatography. The purity of the IgE preparation was assessed by
immunoelectrophoresis, and its concentration determined by a Milenia IgE kinetic EIA (DPC).

FLUORESCEN IN ISOTIOCYANATE LABELLING OF IgE AND IgG
One ml of the IgE or IgG protein (2.5 mg/ml) was incubated for three hours at 37°C with fluorescein isothiocyanate (FITC) isomer 1 on 10% Cellite (Calbiochem) in 0.15 M sodium chloride containing 0.1 M sodium hydrogen carbonate. The samples were passed through a Sephadex G-25 column (Pharmacia) to remove unbound FITC. Fractions containing FITC labelled IgE or IgG were collected and pooled and the FITC to protein ratio was determined by measuring optical density at 280 nm and 495 nm.

IgG SUBCLASS ANTI-IgE MEASUREMENT
IgG1 anti-IgE and IgG4 anti-IgE antibodies were measured in the sera of asthmatic individuals using an enzyme linked immunosorbent assay (ELISA) described previously. Briefly, the procedure involved incubating a 1/5 dilution of the serum samples in IgE or IgE-Fc coated microtitre plates and detecting bound IgG1 and IgG4 anti-IgE with mouse monoclonal anti-human IgG1 and IgG4, followed by alkaline phosphatase conjugated goat anti-mouse IgG. Results were expressed in OD405 units by taking the mean value of duplicate estimations, corrected for non-specific binding (that is, samples added to wells not coated with IgE).

SERUM SAMPLES
Blood samples were obtained, with informed consent, from allergic asthma patients attending the asthma outpatient clinic at University Hospital, Queen’s Medical Centre, Nottingham. Samples which were found to be positive for IgG anti-IgE were used in the IgE blocking experiments (see below). Sera from rheumatoid arthritis patients containing auto-antibodies to IgG (that is, rheumatoid factor) were used as controls. Such rheumatoid factor positive sera did not have detectable IgG anti-IgE.

CELL CULTURES
The method used for constructing the fibroblast cell line transfected with the \(\alpha \) and \(\gamma \) subunits of the human FcRI (CHK1E1) and the original untransfected cell line (CHO) is described elsewhere. CHO was cultured in Iscove’s modified Dulbecco medium (IMDM) containing 10% heat inactivated fetal calf serum (FCS) (SeraLab, JRH Biosciences) and 100 U/ml penicillin + 100 \(\mu \)g/ml streptomycin. CHK1E1 cells were cultured in IMDM, 10% FCS, and 1 mg/ml gentamicin (Gibco, Life Technologies). Both cell lines were cultured to confluence and split every three days. PBS containing 0.05% trypsin/0.02% EDTA (Gibco, Life Technologies) was used to detach the cells from the bottom of the culture flask. Cells were washed in PBS containing 1% bovine serum albumin (BSA) and then resuspended to a concentration of 10\(^6\) per ml.

EXPRESSION OF FC\(\alpha \) CHAIN ON THE CHK1E1 CELLS
A 100 \(\mu \)l volume of 10 \(\mu \)g/ml FITC labelled IgE or IgG was incubated for 15 minutes at room temperature with 100 \(\mu \)l of either CHK1E1 or CHO cells (10\(^6\) cells per ml) and 100 \(\mu \)l of PBS containing 0.1% BSA, and then washed with 2 ml of PBS containing 0.1% azide (to prevent capping). Unlabelled IgE was used to assess autofluorescence. The cells were resuspended and fixed in 0.3 ml Sysmex cellpack containing 0.5% formaldehyde. They were collected on a FACScan (Becton Dickinson) with a linear fluorescence setting of 660 volts. The fluorescence (FL1) profile versus forward scatter (FSC) was used to monitor the cells, and the amplification scale was altered according to the level of fluorescence. For each sample, 4000 events were collected by the FACScan and then analysed by means of the flowMATE program (DAKO).

DEMONSTRATION OF THE IgE BINDING SPECIFICITY OF THE CHK1E1 CELLS
A 50 \(\mu \)l volume of 20 6g/ml (that is, 5.3 \(\times \) 10\(^-8\) M) FITC labelled IgE (patient WT) was incubated for 15 minutes at room temperature with 100 \(\mu \)l of either recombinant human \(\varepsilon \) constant region domains (Ce2-Ce4, Ce2, Ce3) or unlabelled human IgE before incubation with 100 \(\mu \)l of CHK1E1 cells (10\(^6\) cells per ml) and 100 \(\mu \)l of PBS containing 0.1% BSA. The cells were subsequently prepared for FACScan analysis as described previously.

To ascertain the IgE binding specificity of CHK1E1 cells, blocking experiments were performed whereby 100 \(\mu \)l volume of 10 \(\mu \)g/ml FITC labelled IgE (WT) was incubated for one hour at 37°C with 100 \(\mu \)l of a range of anti-human IgE monoclonal antibodies (E1, E3, BSW17, and Le27) and four anti-human IgG subclass monoclonal antibodies (NL16, GOM1, ZG4, and GB7B) as controls. Each mixture was then incubated for 15 minutes at room temperature with 100 \(\mu \)l of CHK1E1 cells (10\(^6\) cells per ml). The cells were subsequently prepared for FACScan analysis as described previously.

THE USE OF IgG ANTI-IgE CONTAINING SERA TO BLOCK IgE-FITC UPTAKE BY CHK1E1 CELLS
All serum samples were incubated for 30 minutes at 56°C to dissociate IgE from anti-IgE. (The IgE site responsible for binding to anti-IgE and the \(\alpha \) chain of FcRI is heat labile.) Thus complexed IgG anti-IgE was rendered available for ligand interaction. To investigate percentage inhibition at different concentrations of IgE-FITC, we used a serum sample (patient FC) that was shown in the initial screen to block the binding of IgE-FITC to the...
Purification of IgG autoanti-IgE

A IgG autoanti-IgE fraction was prepared from the serum of an asthmatic patient (FC), with high titre of IgG anti-IgE, by precipitation with 33% saturated solution of ammonium sulphate. The IgG fraction was isolated on protein G-sepharose and IgG anti-IgE was subsequently isolated from the IgG fraction by affinity chromatography on IgG-sepharose. The protein content of the IgG anti-IgE antibody obtained in this way was quantitated using nephelometry and the preparation tested for anti-IgE activity by ELISA.

Statistical analysis

Correlation coefficients between IgG subclass anti-IgE titres and the ability to inhibit the binding of FITC labelled IgE to the CHK1E1 cells was calculated using Spearman correlation.

Results

The IgE binding specificity of CHK1E1 cells

A dose-response curve was produced from a plot of the median channel number against the concentration of IgE-FITC per 10⁵ CHK1E1 cells. The binding curve of IgE-FITC to the CHK1E1 cells was sigmoidal (fig 1A). IgE-FITC and unlabelled IgE did not cause any significant increase in the median channel number when assayed at concentrations less than 1 µg/ml per 10⁵ CHK1E1 cells. There was no significant binding of IgE-FITC, unlabelled IgE, or IgG-FITC to the untransfected cell line at antibody concentrations below 1 µg/ml per 10⁵ CHO cells.

The specificity of the interaction of IgE with the α chain of the CHK1E1 cells was further ascertained in a competitive assay using purified human IgE and recombinant ε constant region domains. The binding of IgE-FITC to the CHK1E1 cells was inhibited in a dose dependent manner by unlabelled human IgE (patient WT) and by a recombinant fragment spanning the Fc portion of IgE (that is, Cε2–Cε4) (fig 1B). However, the binding of IgE to the CHK1E1 cells was not affected by adding the same molar concentrations of recombinant Cε2 or Cε3 domains. Furthermore, the binding of IgE-FITC to the CHK1E1 cells was inhibited in a dose related fashion with the four anti-human IgE monoclonal antibodies, but not with the anti-human IgG subclass monoclonal antibodies (fig 1C).
Anti-IgE blocks to IgG anti-IgE containing A-IgE-FITC. The serum sample was assayed at various concentrations of IgE-FITC.

Figure 2 Percentage inhibition of IgE-fluorescein isothiocyanate (FITC) binding to CHK1E1 cells with an IgG anti-IgE containing serum sample (patient FC). The serum sample was assayed at various concentrations of IgE-FITC.

Figure 3 The relationship between serum IgG1 anti-IgE titre and per cent inhibition of IgE-fluorescein isothiocyanate (FITC) binding to the CHK1E1 cells. The plot shows a direct relationship between the two variables, which was statistically significant (correlation coefficient 0.66, p = 0.003).

BLOCKING OF IgE-FITC BINDING TO CHK1E1 CELLS WITH SERA CONTAINING IgG ANTl-lgE

A plateau of fluorescence, as defined by negligible changes in the median channel number, was observed at concentrations of IgE-FITC above 1 μg/ml per 10⁵ CHK1E1 cells (fig 1A). Therefore 1 μg/ml of IgE-FITC was taken to be the saturating concentration for the κ chains on the CHK1E1 cells. Thus, in assessing the ability of IgG anti-IgE to block the binding of IgE to the CHK1E1 cells, 0.25 μg/ml of IgE-FITC was used to give 50% saturation of the κ chains on 10⁵ CHK1E1 cells. Percentage inhibition was also maximal at this IgE-FITC concentration (fig 2).

Twenty asthmatic patients’ sera containing anti-IgE were used to investigate the effect of IgG autoanti-IgE on the binding of IgE-FITC to the κ chain of CHK1E1 cells. Results show that the IgG anti-IgE-containing sera inhibited the binding of IgE-FITC to the CHK1E1 cells. This inhibition was found to be directly dependent on the titre of IgG1, but not IgG4, anti-IgE in the sera tested, as shown by a highly significant correlation coefficient (0.66, probability 0.003) (fig 3). The specificity of this blocking effect was further demonstrated by the observation that none of the 15 control (rheumatoid) sera, containing anti-IgG but lacking anti-IgE, inhibited the binding of IgE-FITC to CHK1E1.

BLOCKING OF IgE-FITC BINDING TO CHK1E1 CELLS WITH PURIFIED IgG ANTI-IgE

Affinity purification of IgG anti-IgE from the serum of an asthmatic patient (FC) showed that the IgE blocking activity seen in fig 2 is fully recoverable in the IgG fraction. However, further affinity purification of IgG anti-IgE led to a significant decrease in its IgE blocking activity, possibly because high affinity anti-IgE antibodies resisted elution from the IgG column.

Discussion

We have shown previously that the IgG anti-IgE autoantibody response in asthma patients is directed predominantly against the Cε2–Cε3 interdomain region. Significantly, the high affinity receptor (FccRI) binding site on IgE (aa330–335) is contained within the sequence (aa301–339) recognised by IgG autoanti-IgE thereby suggesting that an autoantibody of such epitope specificity would potentially block the binding of IgE to its high affinity receptor. To explore this possibility, we have used a fibroblast cell line (CHK1E1) transfected with the κ and γ subunits of the human FccRI. The advantage of using the transfected cell line approach (as opposed to mast cells, basophils, and eosinophils) for this purpose is its greater simplicity, because there is no requirement to dissociate endogenously bound IgE from the cells when assessing the binding of IgE to FccRI. Also, human mast cells, basophils, and eosinophils are not readily obtainable in pure form.

We initially demonstrated the IgE binding specificity of the transfected cell line. In addition, we have shown that the binding of IgE to the receptor occurs through the Fc portion of IgE, as indicated by the competitive inhibition experiment using recombinant human IgE-Fc. As expected, such inhibition was not demonstrable with recombinant Cε2 or Cε3 domains because, as expected, the FccRI binding site is located within the Cε3 domain (aa330–335), the structural integrity of the entire Fc region is apparently required for receptor engagement. The IgE binding specificity of the CHK1E1 cells was further ascertained by showing that a range of mouse monoclonal anti-human IgE, but not anti-human IgG, was able to inhibit this interaction.

Having established the validity of our experimental system, we tested 20 serum samples, taken from asthmatic patients with positive titres of IgG1 or IgG4 anti-IgE or both, for their ability to block the binding of IgE-FITC to the
CHK1E1 cells. This revealed inhibition of up to 50%. Such inhibition correlated directly with the titre of circulating IgG1 anti-IgE but not IgG4 anti-IgE. The blocking of IgE binding to the CHK1E1 cells by serum was related to its IgG fraction. However, further affinity purification of IgG anti-IgE led to a significant decrease in its IgE blocking activity, possibly because high affinity anti-IgE antibodies resisted elution from the IgE column. The recently reported IgG autoanti-FcεRI α chain antibodies in sera of urticaria patients could also potentially block the binding of IgE to the CHK1E1 cells. However, we have excluded the possibility that such autoantibodies are present in the sera of asthma patients (data not shown). We have also shown that the IgG anti-IgE antibodies we have been measuring are not anti-idiotypes, as they were equally reactive with IgE and IgE-Fc.

None of the 15 rheumatoid sera containing anti-IgG but lacking anti-IgE that we tested was able to cause inhibition of IgE binding to the CHK1E1 cells. Although the IgG anti-IgE-containing asthmatic patients’ sera caused modest inhibition (up to 50%) of IgE binding to the CHK1E1 cells, we believe that the experimental conditions used in this study underestimated the IgE blocking effect of anti-IgE in vivo. It is estimated that human basophils and mast cells have about 10^4 FcεRI molecules per cell and in non-atopic individuals only a small percentage (3–4%) of the receptors is occupied by IgE. Percentage saturation is unlikely to be much higher in asthma patients who show moderate increases in circulating levels of IgE compared with, for instance, atopic eczema patients. It is therefore important to note that the inhibition values presented in this paper were obtained using IgE-PTC to a chain ratio (giving 50% saturation of receptors) at least 10-fold higher than those found in vivo. We are also likely to have used a much higher IgE to anti-IgE ratio than is the case in the human circulation.

The demonstration that human autoanti-IgE blocks the binding of IgE to its high affinity receptor in vitro is very much in accord with the recent work of Hellman, who showed that the induction of an autoanti-IgE response in rats, by immunisation with a recombinant Ce2–Ce3 fragment, abrogated in vivo mast cell activation. We have also shown previously that autoanti-IgE antibodies isolated from asthma patients modulate allergen induced basophil histamine release. Taken together, these data suggest that the stimulation of autoanti-IgE production, particularly those directed against the Ce2–Ce3 interdomain region, has therapeutic potential in allergic individuals. The great attraction of this strategy is that therapy is aimed at stimulating the production of a naturally occurring, rather than a novel, antibody.

The authors would like to thank Dr J P Kinet and Dr M H Jouvin for their generous gift of the fibroblast cell lines and Dr A R Shaltis for advice on using the FACSScan. SJS is supported by a grant from the Wellcome Trust (03661/Z/92/Z) and FS is a recipient of a British Lung Foundation/Midlands Electricity Board Research Fellowship. IH is a National Asthma Campaign Senior Lecturer.

17 Shaltis F, Smith SJ. In vivo basophil histamine-releasing activity of circulating IgG1 and IgG4 autoanti-IgE antibodies from asthma patients and the demonstration that anti-IgE modulates allergen-induced basophil activation. Clin Exp Allergy 1994;24:270-5.