Dr's Barnes and Gillett comment: We thank Dr Tre'ere for his interest in our editorial. He is obviously a keen proponent of the silver-staining technique, however the value of AgNORs in pathology remains controversial, as denoted by the large number of conflicting publications. In response to his forthright comments, we would like to confirm our original points.

The accurate identification of AgNORs is highly dependent upon tissue preparation and morphology. AgNORs are produced during DNA deposition and hence loss of NOR definition can occur as a result of variations in tissue thickness, the use of different fixatives and procedures at fixation time. These factors also affect the amount of non-specific staining, which can cause problems with the accurate identification of AgNORs.

The universally accepted method of evaluating AgNORs. Counting methods have evolved in order to obtain as much information as possible about discernible NORs. Some have counted AgNORs, others have counted the number of NOR and satellites, whilst further groups have incorporated the AgNOR distribution pattern into their assessment. As such, there is no consensus. There is no evidence that the numbers of AgNORs increase within the normal cell cycle in synchronous AgNORs, others have counted the number of NOR and satellites, whilst further groups have incorporated the AgNOR distribution pattern into their assessment. As such, there is no consensus. There is no evidence that the numbers of AgNORs increase within the normal cell cycle in synchronous

The Ki67 antibody is a monoclonal antibody that recognizes the antigen Ki67, a cell cycle-associated antigen expressed in proliferating cells. The Ki67 antigen is expressed in the nucleus of cells in the G1, S, G2, and M phases of the cell cycle, and is not expressed in resting cells (G0 phase). The Ki67 index is the percentage of cells in a tissue sample that are positive for the Ki67 antigen, and is used as a marker of cellular proliferation. The Ki67 index has been used in various types of cancer, including breast cancer, to assess the proliferative activity of tumor cells.

The Ki67 index is typically assessed using immunohistochemistry (IHC), a technique that uses antibodies to detect antigens in tissue sections. The Ki67 antibody is typically used in combination with appropriate counterstains, such as hematoxylin, to visualize the nuclei of cells. The Ki67 index is calculated by counting the number of Ki67-positive nuclei in a microscopic field and expressing this as a percentage of the total number of nuclei.

The Ki67 index is a useful tool for evaluating the proliferative activity of tumor cells, and has been shown to be predictive of patient outcome in various cancers, including breast cancer. However, the Ki67 index is not specific, and can be affected by factors such as the antibody used, the fixation method, and the staining procedure. Therefore, the interpretation of the Ki67 index should be done with caution, and should be considered in conjunction with other clinical and pathological factors.

In conclusion, the Ki67 index is a valuable tool for evaluating the proliferative activity of tumor cells, and has been shown to be predictive of patient outcome in various cancers. However, the interpretation of the Ki67 index should be done with caution, and should be considered in conjunction with other clinical and pathological factors.