

Molecular methods for virus detection has an all American cast and only an occasional reference from beyond those shores. One of the interesting features is the author list and the numbers of individuals who manage to undertake their research and development of molecular methods within both private and public sector vaccine agencies. In this expanded area of molecular methods that has fuelled the biotechnology industry and now provides a powerful diagnostic arm for virologists.

A number of us who have become partly conversant with enzyme and DNA technology look for reliable recipe books for the laboratory. Recent requirements in the United Kingdom for laboratory accreditation have encouraged formal recording of results in the virology laboratory. Indeed, many techniques that have been passed from senior to junior technicians over several generations is formalised as methodology on every bench. This book supplies basic and well described formal methods and those who wish to be more conversant in molecular virology can develop from these protocols. There is enough insight into the techniques both to stimulate interest in the underlying mechanisms involved and to meet one's own requirements.

The book covers all basic nucleic acid detection techniques in an interesting first chapter. The second chapter addresses the problems of quality assurance: which is a constant worry in a diagnostic laboratory and one that enters a new dimension with the increasingly sensitive amplification techniques that we have to hand. There are a number of overviews within the chapters which are especially valuable for those of us who move from laboratory to clinic and back again. These demonstrate the value of frequently revising and updating our techniques.

One chapter describing the technique proposed for assessing antiviral susceptibility in a wild virus isolate was of particular interest. The "prophets of doom" tell us that we will see an escalation in antiviral drug resistance with the increasing use of virus directed pharmaceuticals. Many of us may see this in the (at least) hundreds of distraught young people who will be afflicted with drug resistant genital herpes. They may no longer achieve remission and relief from the excellent antivirals currently available. The technique proposed in this chapter marries a home-grown and well established plaque assay with a commercial kit assay of antiviral susceptibility in DNA/DNA hybridisation. I am slightly worried about the use of a radioactive probe in the technique recommended: surely we may move on from this marker! While the method proposed for a commercial kit evaluation of viral sensitivity (they supply even the cells in the United States) is interesting, comments in the proce-

dural notes leave me uneasy: "If the virus inoculum is too weak (and) too much time is required to achieve the appropriate CPE (that) the animal agent may overproduce the isolate, giving a false impression of the effectiveness of the drug." The reader should consider this carefully. The logic used is a bit shaky. Do we have a resistant isolate or are we selecting events in the process?

In the chapter on in situ PCR there are good instructions for a technique which we are finding increasingly useful, especially for unexplained pathology where tissue is available. The demonstration of viral nucleic acid within a cell can be a very useful aid to viral pathology. But each case should be interpreted with caution. We carry many viral passengers, sometimes for life, and others for a short time. One PCR followed by a hybridisation in situ does not confirm a cause and effect diagnosis; it merely tips the balance of evidence. I have to admit a certain worry about the descriptions under the black and white photomicrographs of autoradiographs within the chapter which look less selective and convincing than the captions would have us believe.

It is a book to stimulate interest and, I suspect, will be a primer for laboratory staff at all levels. I would not recommend it as a sole manual to a laboratory biologist as one would expect from several good reference guides and a constantly available reminder about the underlying mechanisms that we are addressing. Making things work in the laboratory is one pleasure; developing mechanisms and teasing away at the methods for refinement and the creation of new techniques is another.

PCR: protocols for diagnosis of human and animal viruses is a manual which enters a different dimension from the previous book. It comes with its own MS-DOS disk (although my fear of virus infection has prevented me loading it until my Dr Solomon’s virus checker is updated). Part 1, as the preface tells us, contains 49 useful protocols in 13 sections which deal with the diagnosis and typing of viruses in humans and animals. The 12 chapters of Part II deal with viruses from animals which cause disease. Spumaviruses are not the everyday story of (even) country folk and their role in the aetiology of human disease is hardly a subject that is of immediate concern to us. But I have always been skeptical when the scientist is seen to sell his expertise but lacks the particular diagnostic perspective that years of grinding through outpatient clinic provides. Nonethe-

less, it provides a stimulus. It contains a description of applying PCR to poorly diagnosed but common illnesses such as influenza, respiratory syncytial virus, and even Rhinoviruses. Whether a diagnosis of Molluscum contagiosum by PCR is necessary seems doubtful as it is clinically obvious in its effects. Furthermore, the sequencing for smallpox and of primers for PCR will I hope always be an academic exercise. All the chapters on animal viruses are interesting, al-

though I wonder whether the sales team who allowed this juxtaposition thought the world to be filled with virologists with such refresh-

ingly broad interests? I wonder for whom this book is written. Smallpox (chapter 33) will, I hope, remain historical but hanta virus and the pulmonary syndrome in the USA (chapter 45) was an exercise in diagnosis and cooperation with good laboratory techniques, sound epidemiology, and inquisitive physicians which we all should see. I will own this book for the insight that all this excellent information provides.

COLIN G FINK

This multi-author text consists of four sections that: introduce molecular biological principles; describe the basic molecular techniques applicable to laboratory medicine; discuss application of these techniques to clinical problems; and assess the routine laboratory implementation of such technology. One useful aspect of this book is the inclusion of a wide range of techniques, together with the principles of molecular biology, in one volume specifically designed for clinical molecular diagnostics. However, it is inconsistent in places, with some chapters representing overviews of technical principles and others including practical protocols. Moreover, the protocols that are included are incomplete, assuming some degree of knowledge of the procedures involved. Although some excellent background is given, the chapters addressing clinical application of the techniques described are useful as they are generally restricted to abnormalities of clinical relevance.

Given the assumption that this book was not intended as a practical manual, and in view of the editors’ stated wish particularly to address the interpretation and limitations of molecular diagnostic results, this text gives a good theoretical background for those with little experience in this field. It is readable, comprehensive, and relatively up-to-date with some references from 1996. However, those directly involved in molecular diagnostics are likely to require a supplementary practical manual.

C S HERRINGTON

This book is an overview of the molecular events involved in the process of tumour development. As such, it is competing in a market already crowded with books which make some sense of the morass of information available to those interested or involved in this field. In this regard, the book succeeds, largely as a result of the way in which it is structured. The initial sections, dealing with general principles, gives a distil-

lation of the basic information required to understand the second section, which comprises specific chapters dealing with oncogenes, tumour suppressor genes, and the cell cycle. Molecular Medicine; and Mismatch repair genes. However, it is not essential to read and assimilate all of this information to be able to understand the chapters in the third and fourth sections that deal with specific tumour types and possible clinical molecular strategies. Thus, it is possible to take from the

I welcomed the first edition of this text, immediately purchased the second (1986, 315 pages) but am disappointed by the limited coverage of the third (492 pages). The first and second editions were entirely concerned with mouse monoclonal antibodies, however, the decade between the second and third editions has seen a major broadening of techniques for producing monoclonal antibodies—for example, human–mouse hybridomas and phage display libraries, that are not given due weight in this volume. The author acknowledges this to some extent in his introduction stating “the advantages of a single author book... may soon be outweighed by the logistical impossibility of one individual covering all of the necessary areas”. Another strength of earlier editions is diluted by the authors admission that “my ability to speak from hands-on experience is less than it used to be”.

The expansion of the volume is due to the inclusion of six chapters of basic immunology (115 pages), and the addition of a chapter on immunohistology (20 pages). Personally, I doubt whether this volume would be purchased by any institution or individual who did not already have at least one or more basic texts available and known to them. In short, therefore, the argument for up-dating is slim, but affordable at £29.50.

Path-cyclopedia (CD-ROM; Mac/Windows versions). ($295.00, residents; $495.00, individuals; $695.00, institutions.) Lippincott-Raven. 1996.

Having invested a considerable sum of money on the “hard copy” version of this book and found it most useful, I was intrigued to investigate the relative utility of the CD-ROM equivalent. It certainly weighs much less! Both the Mac and PC versions require 8 Mb of RAM and 11 Mb (PC) or 8 Mb (MAC) of free hard disk space.

The reader may wonder why I am reviewing a disk that, in its conventional form, is entitled Diagnostic surgical pathology. The encouraging fact is that, as both a diagnostic and research pathologist, I find the book and disk most stimulating in that molecular considerations lie in the text almost as a matter of course, reminiscent of the inclusion of immunocytochemical data in groundbreaking diagnostic texts 15 years ago.

Certainly, the quality of production of the CD-ROM reflects the beauty of its mother book and the similar price seems reasonable in relation to the present market. Why should I buy the disk rather than the book? There are two main reasons. First, the ease of cross-referencing is the forte of CD-ROMs, and in a massive body of information such as this, that is of great importance. Second, the disk version comes with a Medline search facility and, as a further bonus, the contents of Diagnostic Molecular Pathology, Applied Immunohistochemistry, and the American Journal of Dermatopathology. What more could a histopathologist want? Furthermore, updates are promised.

In conclusion, I cannot recommend this CD-ROM strongly enough. It may not so readily fall into my hands as the paper version but will inevitably, because of its medium, lead me into many side-tracked diversions as I work my way through the cross-referencing. I only hope that I learn as I go along! Perhaps I now need a powerful lap-top.

R J MAYER

R JEFFERIS

C S HERRINGTON

The cover of this book states: “...intended for every stress laboratory as a source of knowledge and perspectives," and that sums it up precisely. The book is a comprehensive, in-depth volume covering aspects of cell stress from toxic metal responses to protein folding in the endoplasmic reticulum. The in-depth nature of the chapters and the lack of many diagrams makes this a serious read for those involved in areas of, or closely allied to, the heat shock response. Those who work through the chapters will, however, be rewarded by articles of quality written by many of the experts in this field of research.

The book is divided into five parts covering: functions of stress proteins in unstressed cells (normal folding, translocation, receptors, and protein breakdown); regulation of inducible stress responses (methods of sensing cell stress, effect of heat shock on enzyme activities, and SOS response to DNA damage); cellular responses to specific stresses (UV activation of stress proteins, signalling events that control the stress response, and toxic metal responsive transcription); paradigms for complex stress responses (including viral infection, inflammation, and aging); and applications of stress responses in toxicology and pharmacology. The final chapter includes articles on stress proteins as biomarkers for environmental toxicity and the use of heat shock proteins as immunological carriers and vaccines.

The comprehensive scope of the articles in this volume will result in queues for this book at most university libraries as soon as dissertations are requested on any topic relating to heat shock.

J CROCKER