Correspondence

Human papilloma virus detection by in situ hybridisation signal amplification based on biotinylated tyramine deposition

The greatest advantage of non-isotopic in situ hybridisation (NISH) over PCR amplification, for the detection of human papilloma virus (HPV), is a combination of morphological preservation with cellular localisation. Hence, the description of a novel NISH signal amplification method, using catalysed reporter deposition (CARD-ISH) is especially pertinent for HPV DNA detection in paraffin wax embedded sections. This is particularly useful for the detection of low copy number HPV DNA below the threshold of conventional NISH methods. Using the CARD-ISH amplification system, Poddighe et al. demonstrate 1–3 integrated copies of HPV DNA in SiHa cells producing distinct intranuclear punctate/dot signals. This is undoubtedly far more sensitive than the usual detection threshold of viral copies per cell with NISH.1

However, Poddighe et al. also used their amplification system for detecting about 500 integrated copies of HPV16 DNA in CaSkI cells and 20–50 integrated copies of HPV18 DNA in HeLa cells. The resultant amplified signal with CARD-ISH in both these human cervical carcinoma cell lines is a blotchy, lumpy intranuclear signal. This latter signal destroys the distinctive punctate/dot signal that can be easily demonstrated with conventional NISH methodology.2 The significance of the punctate/dot-like signal (type 2 NISH signal pattern) is that it denotes an integrated physical state of HPV DNA in cervical neoplasia; adding a third advantage of NISH over PCR, other than morphological preservation and cellular localisation. Hence, it would appear that CARD-ISH would destroy this valuable signal pattern in a cell containing more than 20–50 integrated viral copies. The type 2 NISH signal pattern, already validated by three independent laboratories,3,4 is a simple technique for the detection of integrated HPV DNA in cervical neoplasia. The use of the CARD-ISH system would therefore be useful only for producing and preserving this signal pattern in low copy number HPV DNA.

Another unusual phenomenon illustrated by Poddighe et al. is a cervical lesion with HPV DNA demonstrated by NISH positive/PCR negative. Although the highly sensitive general primer (GP5+ and GP6+) mediated PCR5 directed towards the L1 open reading frame was used, it nevertheless failed to demonstrate HPV DNA. This phenomenon of NISH positive/PCR negative HPV DNA in clinical samples has been demonstrated previously.6 Conventional NISH requires approximately 12 viral copies per cell for detection of HPV DNA in paraffin sections.7 In contrast, it has been estimated that PCR requires at least 106 viral copies per cell to detect HPV DNA in a paraffin wax embedded clinical sample for amplification of the virus.8 This extends further the advantages of NISH over PCR. The alternative explanation for the NISH positive/PCR negative cervical lesion in CaSkI cell lines is that Poddighe study may be related to the integration of HPV16 DNA in this case with disruption of L1 ORF, preventing amplification with the GP5+/GP6+ PCR system that targets the L1 gene. Although the E2 gene is consistently disrupted with HPV DNA integration into host chromosome, the L1 gene may also occasionally be interrupted.9 In such instances, the use of PCR systems directed towards E6 may be even more useful for the demonstration of the HPV DNA.

K. COOPER
L. TAYLOR
Department of Anatomical Pathology,
SAMIR/Wits University,
PO Box 1108, Johannesburg 2006,
South Africa


Dr Poddighe comments:
The three most commonly used cervical cell lines CaSkI (> 500 integrated copies of HPV 16 DNA), HeLa (20–50 integrated copies of HPV18 DNA) and SiHa (1–3 integrated copies of HPV16 DNA) were used to determine the sensitivity, specificity, and the possibility of routine diagnostic application of our CARD-ISH technique compared with conventional NISH methodology. Our conclusion from these results is that a few integrated HPV DNA copies (1–3 copies per nucleus in SiHa cells) can easily be recognised with CARD-ISH. Cooper and Taylor are correct in their comment that the resultant amplified signal with CARD-ISH destroys the distinctive punctate/dot signals of HPV DNA in nuclei of cell lines CaSkI and HeLa. However, in our 1995 paper concerning the CARD-ISH technology we showed that it was possible to obtain distinct punctate/dot ISH signals in nuclei by varying the biotinylated tyramine concentration, the incubation time or both. In the later paper concerning HPV detection using CARD-ISH we wanted to show that our new CARD-ISH approach enables routine study of cervical premalignant lesions and carcinomas for infection with [low copy numbers of] HPV DNA in combination with morphological preservation. False negative results because of insufficient sensitivity of conventional NISH methods will be minimised to almost zero. In fact, the use of the epitope HPV16 E6 as a probe in our CARD-ISH methodology is superior to PCR as the latter approach may lead to false negative results (and therefore misdiagnosis of an HPV infection) resulting from disruption, deletion or mutation of primer annealing sites, as suggested by Cooper and Taylor. Of course, the intranuclear or cellular localisation of individual HPV copies in cervical neoplasia can be studied by conventional NISH methodology only when at least 12 viral copies per cell are present in paraffin sections.9


Notice

International symposium on metastases in head and neck cancer
January 15–18, 1998
Kiel, Germany

For further details, please contact Dr J A Werner or Dr B M Lippert, Department of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 14, D-24105, Kiel, Germany. (Tel: +49 431 597 2321; fax: +49 431 597 2272; email: j.a.werner@t-online.de)