Papers

Modification of cystatin C activity by bacterial proteinases and neutrophil elastase in periodontitis

Magnus Abrahamson, Maude Wikström, Jan Potempa, Stefan Renvert, Anders Hall

Abstract

Aim—To study the interaction between the human cysteine proteinase inhibitor, cystatin C, and proteinases of periodontitis associated bacteria.

Methods—Gingival crevicular fluid samples were collected from discrete periodontitis sites and their cystatin C content was estimated by enzyme linked immunosorbent assay (ELISA). The interaction between cystatin C and proteolytic enzymes from cultured strains of the gingival bacteria *Porphyromonas gingivalis, Prevotella intermedia,* and *Actinobacillus actinomycetemcomitans,* was studied by measuring inhibition of enzyme activity against peptidyl substrates, by detection of break down patterns of solid phase coupled and soluble cystatin C, and by N-terminal sequence analysis of cystatin C products resulting from the interactions.

Results—Gingival crevicular fluid contained cystatin C at a concentration of ~15 nM. Cystatin C did not inhibit the principal thiol stimulated proteinase activity of *P. gingivalis.* Instead, strains of *P. gingivalis* and *P. intermedia,* but not *A. actinomycetemcomitans,* released cystatin C modifying proteinases. Extracts of *P. gingivalis* and *P. intermedia* strains all hydrolysed bonds in the N-terminal region of cystatin C at physiological pH values. The modified cystatin C resulting from incubation with one *P. gingivalis* strain was isolated and found to lack the eight most N-terminal residues. The affinity of the modified inhibitor for cathepsin B was 20-fold lower (K S 5 nM) than that of full length cystatin C. A 50 kDa thiol stimulated proteinase, gingipain R, was isolated from *P. gingivalis* and shown to be responsible for the Arg8-bond hydrolysis in cystatin C. The cathepsin B inhibitory activity of cystatin C incubated with gingival crevicular fluid was rapidly abolished after Val10-bond cleavage by elastase from exudate neutrophils, but cleavage at the gingipain specific Arg8-bond was also demonstrated.

Conclusions—The physiological control of cathepsin B activity is impeded in periodontitis, owing to the release of proteinases from infecting *P. gingivalis* and neutrophils, with a contribution to the tissue destruction seen in periodontitis as a probable consequence.

Keywords: cysteine proteinase inhibitor; *Porphyromonas gingivalis; Prevotella intermedia; Actinobacillus actinomycetemcomitans;* cathepsin B; periodontitis

Human cystatin C, a single chain protein of 120 amino acid residues, is a potent inhibitor of papain-like cysteine proteinases such as the human lysosomal enzymes cathepsins B, H, L, and S. It interacts reversibly with these proteinases and binds in their active site clefts in competition with substrate. The N-terminal segment of the inhibitor constitutes a discrete enzyme binding region, which is an important contributor to the high affinity inhibition of human cysteine proteinases through interactions with their substrate binding pockets. Another, wedge shaped enzyme binding region that constitutes the remainder of the target proteinase contact area is built from residues in two hairpin loops corresponding to the central Gln-55-Gly-59 segment and a segment towards the C-terminal part of the inhibitor chain.

Cystatin C is synthesised in most tissues of the body and has been found in all major biological fluids, which is a uniquely wide distribution for the low Mr, cysteine proteinase inhibitors belonging to family 2 of the cystatin superfamily. Moreover, extracellular concentrations of cystatin C are sufficiently high to allow efficient control of the activities of cathepsin B, H, or L if released into any of the major body fluids. Cathepsin B and/or L have been detected extracellularly in conditions like endotoxin induced sepsis, metastasising cancer, and at the sites of local inflammatory processes in rheumatoid arthritis, purulent bronchectasis, and periodontitis. The especially high concentrations of cystatin C and
other family 2 cystatins in secretions like saliva, tears, and seminal plasma indicate that the inhibitors might have an additional function in the defence against invading microorganisms. However, the few characterised cysteine proteinases of disease causing bacteria do not seem to belong to the superfamily of papain-like enzymes. For example, the cysteine proteinase of group A streptococci (and growth of the bacteria) can be inhibited by synthetic cystatin C based peptide díazomethylketone inhibitors but not by cystatin C itself. 19 Similarly, a cysteine proteinase of Staphylococcus aureus is not inhibited by cystatin C. 20 Other examples of bacterial cysteine proteinases include clostripain from Clostridium histolyticum, and a secreted enzyme from Porphyromonas gingivalis.

P. gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans seem to be the principal pathogens responsible for the destruction of the tooth supporting tissue, known as periodontitis. 26 Among the numerous putative virulence factors of these periodontopathogenic bacteria, the primary focus of research has been on proteolytic enzymes elaborated in large quantities by P. gingivalis. Such enzymes catalyse degradation of extracellular matrix and ion binding proteins, immunoglobulins, factors of the coagulation cascades, bactericidal proteins and peptides, and ion transporting/sequestering proteins. Their action also results in inactivation of host serine proteinase inhibitors and activation of host matrix metalloproteinases as well as the kallikrein/kinin cascade. 21 In addition to providing essential nutrients for the subgingival bacteria, the P. gingivalis enzymes are thus implicated in the processes of evasion of host defence mechanisms and penetration/destruction of connective tissue. For a considerable amount of time the major proteolytic activity of P. gingivalis was classified as a thiol dependent trypsin-like activity, although other types of enzyme activities such as that of a collagenase 22 and a serine proteinase 23 have also been noticed. Attempts to purify and characterise the trypsin-like proteinase yielded a considerable amount of ambiguous data, creating a confusing picture of P. gingivalis as a bacterium producing a myriad of related but non-identical proteinases. Fortunately, recent rigorous purification of P. gingivalis cysteine proteinases 24 and elucidation of their structures at the gene and protein levels, 25 backed up by western blot analysis combined with zymography and inhibition studies, 27 revealed that in most P. gingivalis strains there are only two primary enzymes, one with Arg-Xaa specificity (gingipain R) and the other with Lys-Xaa specificity (gingipain K), both of which occur in many different molecular mass forms.

The purpose of the present investigation was to study the interaction between cystatin C and proteinases of periodontitis associated bacteria, especially with respect to possible inhibition of the thiol stimulated Arg-Xaa specific enzyme activity of P. gingivalis. We show that the principal P. gingivalis cysteine proteinase is not inhibited by the cystatin but that, instead, both P. gingivalis and P. intermedia have the capacity to modify the inhibitor proteolytically, with a consequent negative effect on the inhibitory properties of cystatin C.

Materials and methods

MATERIALS

Human cystatin C was produced by Escherichia coli expression, and purified as described earlier. 26 Human cathepsin B (EC 3.4.22.1), affinity purified by the procedure of Rich et al. 26 was purchased from Calbiochem (La Jolla, California, USA). Papain (EC 3.4.22.2) was isolated from commercial papain (Sigma, St Louis, Missouri, USA; type III) by affinity chromatography according to the protocol described by Blumberg et al., 27 but using the peptide H-Gly-Gly-Tyr-Arg-OH coupled to CNBr activated Sepharose 4B (Pharmacia, Uppsala, Sweden). The enzyme substrates Cbz-Phe-Arg-NHMec and Bz-DL-Arg-pNA were obtained from Bachem Feinchemikalien (Bubendorf, Switzerland) and the synthetic inhibitor tosyl-Lys-chloromethyl ketone came from Sigma. All chemicals used were of analytical grade and were obtained from Sigma.

PROTEIN ANALYSES

Analytical agarose gel electrophoresis in barbital buffer, pH 8.6, was performed according to Jeppsson et al. 28 Polyacrylamide gel slab electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE) was performed as described by Laemmli, 29 with separation gels containing 20% acrylamide or in gradients of 8–20% acrylamide. Automated N-terminal sequence analysis with an Applied Biosystems 470A sequencer was performed by standard methods, after blotting of electrophotographically separated protein bands from agarose or polyacrylamide gels to poly(vinylidifluoride) membranes (Trans-blot; Bio-Rad, Hercules, California, USA) as described previously. 30, 31 Concentrations of native recombinant cystatin C in solutions were determined by A 280 measurements (ε 280 = 12 200/M/D). 32

Cystatin C determination in gingival crevicular fluid samples

Gingival crevicular fluid (GCF) from sites with severe periodontitis, with a tooth pocket depth of > 6 mm, was collected from 11 patients by the collection paper points as described previously. Each point was kept in place for 15 seconds and then transferred to a vial containing 100 μl of 150 mM NaCl and kept at −80°C until assayed. Cystatin C concentrations in the samples were measured with a double sandwich enzyme linked immunosorbent assay (ELISA), 33 using isolated recombinant human cystatin C as standard.

BACTERIAL STRAINS

Five P. gingivalis strains (OMGS 100, OMGS 478, OMGS 588, OMGS 590, and OMGS 456) and five P. intermedia strains (OMGS 53, OMGS 58, OMGS 64, OMGS 104, and OMGS 105), isolated from the subgingival plaque of patients with
Cystatin C in periodontitis

periodontitis, were cultivated on brucella agar plates for three to five days at 36°C. The cells were washed once in 10 mM phosphate buffer, pH 7.2, containing 150 mM NaCl, pelleted by centrifugation and lyophilised. Crude extracts were prepared by suspending the lyophilised bacteria in 50 mM sodium acetate buffer, pH 4.5, containing 150 mM NaCl and 5 mM CaCl₂, followed by crushing (French press, three times), and centrifugation at 10 000 × g for two hours. The supernatant was collected and lyophilised for storage of the extracts. P. gingivalis strain OMGS 100, P. intermedia strain OMGS 58 and A. actinomycetemcomitans strain OMGS 191 were used in protein degrading activity plate assays. P. gingivalis strain H66 was grown in 30 g/l Trypticase soy broth (Difco, Detroit, Michigan, USA), 5 g/l yeast extract, 5 mg/l hemin, 0.5 g/l cysteine, 0.1 g/l dithiothreitol, and 1 mg/l menadione (all from Sigma) at 37°C for 48 hours.

ASSAY OF RELEASED PROTEIN DEGRADING ACTIVITY FROM CULTURED BACTERIA

The bacteria included in the study were tested for release of cystatin C degrading enzymes by use of a plate screening technique. The inner surface of a polystyrene Petri dish was coated with recombinant cystatin C from a 10 mg/ml solution in distilled water, by incubation at room temperature for six hours, and then covered with agar containing cultivation medium. The medium used was brucella agar (BBL Microbiology Systems, Cockeysville, Maryland, USA) with 50 ml/l defibrinated horse blood, 20 ml/l haemolysed blood, and 0.5 mg/l menadione. The bacteria were inoculated as spots on the agar surface and the dishes were incubated at 36°C in 95% H₂ and 5% CO₂. The agar was removed after a heavy growth was obtained and the cystatin C coated surface was exposed to water vapour. Degraded cystatin C was seen as a surface with lowered wettability compared with that of the native inhibitor.

PURIFICATION OF GINGIPAIN R

The 50 kDa Arg-Xaa specific proteinase known as gingipain R (EC 3.4.22.37) was purified from P. gingivalis strain H66 culture fluid using a combination of acetone precipitation, gel filtration, arginine-Sepharose affinity chromatography and anion exchange chromatography. The final gingipain R preparation was dialysed against 20 mM bis-Tris buffer, pH 6.8, containing 150 mM NaCl, 5 mM CaCl₂, and 0.02% (wt/vol) NaN₃. The amount of active enzyme was determined by active site titration using D-Phe-Pro-Arg-CH₂Cl.

IN VITRO INTERACTIONS BETWEEN BACTERIAL ENZYMES OR GCF AND CYSTATIN C

The interaction of recombinant cystatin C with proteinases in P. gingivalis or P. intermedia extracts or culture media was studied in 50 mM Tris-HCl buffer, pH 7.4, containing 150 mM NaCl or with the same buffer supplemented with 10 mM cysteine. In studies of the cystatin interaction with isolated gingipain R or GCF samples the buffer was supplemented further with 5 mM CaCl₂ and 50 mM Gly-Gly. Incubations at 37°C were performed in sterile capped microcentrifuge tubes, and samples were taken at timed intervals. Following incubation, proteinase activity was stopped by instant freezing, or by the addition of tosyl-Lys-chloromethyl ketone to a final concentration of 1 mM. The degree of cystatin modification was studied by agarose and SDS-polyacrylamide gel electrophoreses. Resulting modified cystatin C species were analysed by N-terminal sequencing.

ISOLATION AND CHARACTERISATION OF P. GINGIVALIS MODIFIED CYSTATIN C

A 2 mg sample of cystatin C was incubated with 3 mg of lyophilised P. gingivalis strain OMGS 100 in 50 mM Tris buffer, pH 7.4, containing 150 mM NaCl and 10 mM cysteine, for two hours at 37°C, after which all of the native cystatin C was modified and displayed altered agarose gel mobility. The modified cystatin C was isolated by preparative agarose gel electrophoresis and desalted by gel chromatography at 22°C using a Superose 12 10/30 column (Pharmacia) in 50 mM ammonium bicarbonate, pH 8.0, with a flow rate of 18 ml/hour. Mₐ estimation of the modified cystatin was performed by SDS-PAGE in the presence or absence of β-mercaptoethanol, and by gel chromatography using the Superose column as described above with bovine serum albumin (Mₐ 67 000), ovalbumin (Mₐ 43 000), β-lactoglobulin (Mₐ 35 000), human carbonic anhydrase B (Mₐ 28 700), chymotrypsinogen (Mₐ 23 250), bovine ribonuclease (Mₐ 12 650), cytochrome C (Mₐ 12 400) and aprotinin (Mₐ 6500) as calibrators.

ENZYME ASSAYS

Concentrations of inhibitory active cystatin in samples for kinetic studies were determined by titration of affinity purified papain, which itself had been titrated with E-64 as described. The same assay based on hydrolysis of Bz-DL-Arg-pNA was used to measure the trypsin-like cysteine proteinase activity of P. gingivalis extracts or media. For determination of equilibrium constants for dissociation (Kₐ) of complexes between full length or proteolytically modified cystatin C and human cathepsin B, continuous rate assays with Bz-Phe-Arg-NHMe as substrate at pH 6.0 were used, and the results were evaluated as described in detail elsewhere.

Results

PRESENCE OF CYSTATIN C IN GINGIVAL CREVICULAR FLUID

GCF samples were collected from 11 patients with untreated severe periodontitis by paper points that were subsequently eluted in 100 µl NaCl solution. Because the GCF volume normally absorbed by the method is around 5 µl, the resulting samples represented approximately 20-fold dilutions of GCF. Immunochemical quantitation of cystatin C in the samples revealed that all contained cystatin C (range, 2.2–39 ng/ml). The mean cystatin C concentration in the original GCF, taking the
cellulase and mixture agarose. Samples bands (588); bacteria. membranes subjected to the agar and allowed to grow until large colonies were obtained. The agar was then removed and the cystatin C-coated surface was exposed to water vapour to visualise zones of degraded protein. Cr, Campylobacter rectus (negative control); Aa, Actinobacillus actinomycetemcomitans; Pi, Pretotella intermedia; Pg, Porphyromonas gingivalis.

dilution into account, was \(\sim 0.2 \, \mu \text{g/ml or 15 nM}. \)

INTERACTION BETWEEN CYSTATIN C AND PROTEINASES FROM PERIODONTITIS ASSOCIATED BACTERIA

To investigate the possibility that cystatin C inhibited the trypsin-like cysteine proteinase activity of \(P. \) gingivalis, a bacterial extract was assayed with Bz-Arg-pNA as substrate. When added to this assay, cystatin C did not result in complete inhibition of the enzyme activity, even at concentrations of up to 7.5 nM. However, a low degree of inhibitory activity was apparent, resembling that of a competing sub-

strate. To investigate whether \(P. \) gingivalis contained and secreted enzymes acting on cystatin C as a substrate, a screening assay with cultures of \(P. \) gingivalis grown on cystatin C-coated Petri dishes was used. Cultures of the other two principal periodontitis pathogens, \(P. \) intermedia and \(A. \) actinomycetemcomitans, were also analysed. The results (fig 1) demonstrated clearly that both \(P. \) gingivalis and \(P. \) intermedia secreted cystatin C-degrading enzymes, whereas \(A. \) actinomycetemcomitans did not.

To further characterise the bacterial interaction with cystatin C, extracts of five \(P. \) gingivalis and five \(P. \) intermedia strains were generated and used for incubations with cystatin C in physiological buffer. Analysis by charge separating gel electrophoresis revealed three different patterns of limited cystatin C hydrolysis caused by the different strains (fig 2). Also, the rates of disappearance of the native cystatin C in the incubation mixtures varied markedly, indicating varying amounts of cystatin degrading enzymes in the different strains. The hydrolys products were characterised by N-terminal sequencing (fig 3), demonstrating that the hydrolysis events causing altered electrophoretic mobility of cystatin C were all cleavages of bonds in the N-terminal inhibitor segment. The predominant \(P. \) gingivalis cleavage was at the bond Arg8–Leu9, but an additional cleavage at the Val10–Gly11 bond was also observed for two of the strains analysed. The \(P. \) intermedia strains cleaved the Lys5–Pro6 and Pro7–Arg8 bonds predominantly, but on longer incubations the Leu9–Val10 bond was also cleaved (fig 3).

To verify that \(P. \) gingivalis also releases cystatin C degrading activity, as indicated by the results from the culture screening assay, culture medium from the free growing strain H66 was incubated with cystatin C. Again, N-terminal sequencing demonstrated that the medium contained enzyme activity that caused cleavage of N-terminal segment cystatin C bonds. The predominant cleavage resulting from incubation with this medium was at the Arg8–Leu9 bond (fig 3).

Because the predominant cystatin C cleavage caused by \(P. \) gingivalis (at the Arg8–Leu9 bond) agrees with the substrate specificity of gingipain R, an enzyme for which two molecular mass forms have been characterised recently in detail, it can be assumed that the low molecular mass enzyme of 50 kDa was isolated from \(P. \) gingivalis strain H66. Incubation of the enzyme with cystatin C at a 1:100 ratio revealed a rapid conversion (half life approximately two minutes) of the native cystatin C to a modified form with lower molecular mass (fig 4)

N-terminal sequencing of the incubation mixture after five minutes incubation gave the single sequence Leu-Val-Gly-Gly-Pro-Met—, strongly indicating that gingipain R is the enzyme responsible for the predominant cystatin C cleavage in the various \(P. \) gingivalis extracts and culture media. Probably this enzyme is also responsible for the inhibitor degrading activity observed in the assay of \(P. \) gingivalis secreted proteolytic enzymes.
Cystatin C activity in periodontitis

Figure 3 Points of cystatin C hydrolysis caused by enzymes from periodontopathic bacteria. The N-terminal cystatin C sequence is shown, with amino acid residues indicated by the standard one letter code. The residues with positively charged side chains are indicated, as are the residues known to participate directly in binding to the target enzyme, cathepsin B (shaded area). The bonds being cleaved by the different bacterial strains in physiological buffer containing 10 mM cysteine are marked with arrows, with parentheses indicating minor (less than 25% of the major) cleavage points. Pg, Porphyromonas gingivalis; GCF+α1,PI, gingival crevicular fluid preincubated with a proteinase inhibitor.

Figure 4 Time course experiment for the modification of cystatin C by isolated 50 kDa gingipain R. A mixture of cystatin C and isolated gingipain R, at a molar ratio of 100:1, was incubated at 37°C and pH 7.4. Samples were taken after different periods of time and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The sizes of relevant molecular size markers are given on the left.

PROPERTIES OF P gingivalis MODIFIED CYSTATIN C

An aliquot of 2 mg cystatin C was incubated with 3 mg of a lyophilised P gingivalis OMGS 100 extract for three hours, after which no native cystatin C could be detected by agarose gel electrophoresis of the sample. The initially formed modified cystatin C (band A in fig 2) was isolated to a purity of at least 95% as judged by electrophoresis. It had an approximate Mr, according to gel chromatography on Superose 12 of 13 300. Native cystatin C eluted from the same column at a volume corresponding to an Mr of 13 700. SDS-PAGE with reducing or non-reducing conditions gave Mr estimations for the modified and native cystatin C of 14 500 and 15 300, respectively. N-terminal sequencing and amino acid analysis were consistent with the modified cystatin C being devoid of the Ser1–Arg8 octapeptide.

The isolated modified cystatin C was used for inhibition studies. It was 37% active as an inhibitor of papain under titrating conditions, compared with an activity of 58% obtained for parallel analysis of native recombinant cystatin C. The equilibrium constants for dissociation (K) of the modified and native inhibitors from complexes with cathepsin B were determined to be 5.0 nM and 0.27 nM, respectively; therefore, the modified inhibitor had a 20-fold lower affinity for the proteinase.

INTERACTION BETWEEN GCF COMPONENTS AND CYSTATIN C

To investigate the net effect of proteinases and their inhibitors in GCF on cystatin C, two GCF samples were supplemented with cystatin C at 0.5 mg/ml and incubated at 37°C. The added cystatin C was converted rapidly to a form with altered electrophoretic mobility (with t_{1/2} for the disappearance of native cystatin C of approximately two hours). N-terminal sequencing of the modified gel band gave the single sequence Gly-Gly-Pro-Met-Asn– for both samples. The Val10-bond cleavage giving rise to this modified form of cystatin C is characteristic of neutrophil elastase, which is abundant in GCF. Neutrophil elastase cleavage of cystatin C results in a 350-fold decreased cathepsin B affinity of cystatin C, rendering the inhibitor inactive at physiological concentrations.

To verify that the GCF mediated cleavage of cystatin C was due to the activity of neutrophil elastase, and to investigate if additional cleavages of more N-terminal cystatin C bonds by GCF components were masked by the Val10-bond cleavage, GCF samples were preincubated with α₁ proteinase inhibitor (1 mg/ml). When the pretreated GCF was incubated with cystatin C, the rapid cystatin C cleavage seen previously was absent. However, after prolonged incubation (24 hours at 37°C), 30% of the added cystatin C displayed altered gel mobility. Sequencing of the modified cystatin C gave a unique N-terminal sequence starting at residue Leu9 (fig 3), thus demonstrating that an additional cystatin C degrading enzyme with Arg–Xaa bond specificity was present in the GCF. It was probably gingipain R because the Arg8–Leu9 peptide bond cleavage was not seen in a parallel incubation mixture in which the reducing agent (10 mM cysteine) had been omitted and, therefore, the action of host Arg–Xaa specific serine proteinases could be ruled out. Supporting this, activity of gingipain R has been detected in GCF and its activity has been correlated with the presence of P gingivalis in subgingival plaques.

Discussion

In the present investigation we have demonstrated that the periodontopathic bacteria, P gingivalis and P intermedia, contain and secrete cysteine proteinases that are not inhibited by the major human inhibitor of papain-like enzymes, cystatin C. Instead, the bacterial enzymes modify cystatin C by catalysing the cleavage of bonds in the N-terminal inhibitor segment. This segment has been shown to constitute one discrete binding region involved in the interaction with target enzymes like cathepsins B, H, L, and S. The remaining target proteinase binding area is built from two hairpin loops formed by the more C-terminal cystatin C segments Gln55–Gly59 and...
Pro105→Trp106. The amino acid residues in the N-terminal segment that are responsible for the enzyme binding, and generally make the largest contribution to the binding energy, are Leu9 and Val10. But in the case of cathepsin B inhibition, a significant affinity contribution to the cystatin C–cathepsin B interaction by the side chain of Arg8 has also been demonstrated by both studies of peptidyl diazomethanes based on the N-terminal sequence of cystatin C and in vitro mutated cystatin C variants.

Although of much less significance than the interaction mediated by the side chain of Val10, the Arg8 contribution to cathepsin B binding appears to be physiologically important. Cystatin C is the human cystatin with the highest affinity for cathepsin B, but the K of the wild-type cystatin C for cathepsin B inhibition is on the border of that required for complete inhibition by a reversible inhibitor in vivo. Hence, smaller contributions to the inhibitor affinity for this enzyme should also be deemed significant. The major cystatin C cleavage observed after interaction with P gingivalis is at the bond Arg8–Leu9, thus, the N-terminal octapeptide of the inhibitor including residue Arg8 is lost. Functional characterisation of the thereby modified cystatin revealed that the modification resulted in a 20-fold decreased affinity for cathepsin B, with a K for cathepsin B inhibition by the modified cystatin C of 5 nM. This is of the same order as the cystatin C concentration we measured in gingival crevicular fluid (15 nM). Thus, the cystatin C inhibition of cathepsin B is impeded owing to the P gingivalis interaction. As a result, cathepsin B probably contributes to the tissue destruction at the sites of inflammation in periodontitis.

The ability of P gingivalis to cleave cystatin C was due predominantly to the presence of gingipain R; however, two of five tested strains exerted proteolytic activity also able to split the inhibitor after Val10. Such a cleavage has a more pathological significance because it renders cystatin C physiologically inactive against cathepsins L and H as well as cathepsin B. Also, this result indicates that in addition to gingipains R and K other proteolytic enzymes are also produced by P gingivalis. Enzymes with substrate specificities corresponding to the additional cystatin C cleavages observed have not yet been purified, although the presence of two genes encoding distinct candidate cysteine proteinases have been reported.

It is known that P intermedia is able to degrade immunoglobulins, fibronectin, and some other plasma proteins, but regarding the characterisation of its proteinases, P intermedia still remains terra incognita. The main P intermedia cystatin C cleavage sites reported here, although probably without affect on inhibitor activity, shed some light on the specificity of enzymes produced by this bacterium and might facilitate their future purification.

The presence of cystatin C in GCF has been determined using an immunochemical technique (this report) or by the inhibition of papain; both methods detect cystatin C regardless of physiological ability to control its target lysosomal cysteine proteinases. However, many recent reports have described high levels of fully active neutrophil elastase in GCF and have indicated that the local concentration of its primary inhibitor, α1-proteinase inhibitor, is too low for efficient neutrophil elastase control. Therefore, it is very unlikely that cystatin C, in such a highly proteolytic environment, can preserve its inhibitory activity, especially because our present data demonstrate that native cystatin C added to GCF samples was converted promptly to a physiologically inert species lacking the first 10 amino acids residues of the N-terminal protein segment. Inactivating the Accessibility of Cystatin C to inhibit its target proteinases explains the presence of proteolytically active cathepsins B, D, H, and L measured in both GCF and gingival tissue. Inactivation of cystatin C in periodontitis lesions might have a profound pathological consequence because it is well established that lysosomal cysteine proteinases are involved in bone resorption and that their inhibitors suppress this process in several models, including isolated osteoclasts cultured on calcified surfaces.

We thank Mrs Anne-Cathrine Löfström for skillful technical assistance and Dr Jim Travis for support and encouragement. This work was supported by grants from Bergvall's Foundation, the Medical Faculty of the University of Lund and the Swedish Medical Research Council (Project No. 09915). The work in Gothenburg and at the University of Georgia was supported by a grant from the Swedish Medical Research Council (No. 09125) and by National Institutes of Health grant DE 09761, respectively.

Cystatin C activity in periodontitis

Wikström MB. Detection of microbial proteolytic activity by a combination plate assay in which different proteins adsorbed to a hydrophobic surface are used as substrates. *Appl Environ Microbiol* 1983;45:393–400.

