Correspondence

p53 gene mutations in multiple myeloma

We were interested in the article by Owen et al. on p53 gene mutations in multiple myeloma. They had studied the p53 exons 5-9 by PCR-SSCP and they found only one p53 mutation among 36 DNA samples from 31 patients with multiple myeloma. They concluded that p53 mutations are rare and confined to end stage leukemias. We have studied p53 protein expression in myeloma cases determined by immunohistochemistry, and our results and conclusions were different from Owen and colleagues'.

Our study group comprised 31 patients with multiple myeloma and four with isolated plasmacytoma. Twenty of the myeloma cases were newly diagnosed and the other 11 had relapsed or had resistant disease. All of the multiple myeloma patients were in stage III and 13 cases had also renal involvement.

Fresh bone marrow aspiration samples from myeloma patients and paraffin wax embedded tissue sections from plasmacytoma cases were stained by the ABC method. To determine p53 protein expression, a monoclonal antibody against the p53 suppressor gene product (DO-7 Novacastra K-32; Novacastra, Newcastle upon Tyne, UK) recognizing both normal and mutant forms of protein was used. Eight of the 35 cases showed p53 protein expression, none of the plasmacytomas showed p53 protein expression; therefore, p53 protein expression was found in 26% of cases of multiple myeloma. Four of the eight p53 positive cases were newly diagnosed and four of them were resistant and/or relapsed cases. Four of the 24 newly diagnosed, four of 11 relapsed cases, four of the 18 stage I/II, and four of the 13 stage I/IIIB cases had p53 expression. There was no significant difference for p53 expression between newly diagnosed and relapsed cases or between I/II and I/IIIB cases (p < 0.25). None of our patients had features of leukemic phase disease.

p53 gene alterations in plasma cell dyscrasias have not been as well studied as we studied. Owen and colleagues did not give a account of the stage and status of the renal involvement for their patients. It is well known that p53 gene has a complex structure and that functional inactivation can result from the loss of p53 gene function. Therefore, there is no ideal method for the detection of p53 gene alterations; however, by using more than one technique such as immunohistochemistry and PCR-SSCP, the results may be more informative.

We believe that if immunohistochemistry could be used concurrently with PCR-SSCP analysis, Owen et al's results and comments might be more useful.

We conclude that p53 mutations are not particularly rare in multiple myeloma. We agree that p53 mutation is not an initial step in myelomagenesis. We need larger studies with more patients and methods to determine the pathogenetic role of p53 mutations in multiple myeloma.

S PAYDAS
B SAHIN
E SEYREK
S ZORLUDEREJ
Cukurova University, Faculty of Medicine, Department of Pathology, 01330 Batakolu, Adana Turkey


Dr Owen and colleagues comment:

Using PCR-SSCP we found only one patient with multiple myeloma from 31 cases who had a mutation of p53. We agree that the incidence of detectable p53 protein expression is higher. In a small group of cases (not the same as those described in the paper) we found four of 17 (23.5%) in which p53 was present in primarily the polyclonal antibody 801. In three of the cases, p53 was present in a small minority of the plasma cells. The presence of p53 in a minor proportion of tumour cells is seen commonly in other types of B lymphoproliferative disorders, and there is no evidence that this is due to stabilisation of the protein by mutation. In general, the association between p53 expression and mutation in lymphoproliferative disorders is much less firmly established than for epithelial tumours. The incidence of p53 immunoreactivity, therefore, cannot be assumed to be directly relevant to establishing the incidence of p53 mutations in myeloma. Equally, the occurrence of mutated p53 in myeloma does not appear to be considered as any indication of the incidence of p53 mutation in clinical samples.

We have not correlated the presence of renal impairment with the presence of p53 mutation or overexpression. One of the dysfunctions in myeloma involves multiple factors including calcium, Bence-Jones protein, and the development of amyloid. It is difficult to postulate a role for p53 expression or mutation in this process other than as a broad correlate with advanced stage disease.

Within the limits of detection of the PCR-SSCP method the incidence of p53 mutation in myeloma appears to be low although clearly an accurate estimate would require a larger study. The reason for the expression of p53 by some plasma cells is a separate and more complex question that does not directly affect the conclusions of our study.
described. Database numbers are given along with key references from the past few years, many of which are from 1996 or unpublished data from the authors themselves. This allows the reader rapid access to the world literature. Finally the amino acid sequence of each antigen is described if known.

The book is a timely update and essential reading for all people working in this particular aspect of biomedical science. The authors deserve great credit for the rapidity with which this has been produced.

Although extremely compact and full of data it is slightly too big to fit in the average Christmas stocking but, with a price that is not prohibitive, this is a logical place for it if you happen to be getting on with your laboratory colleagues this year. As a book reviewer, one often spends many tedious hours out of devotion to the editor but on this occasion he has done me proud and certainly saved me the purchase price.

C FEGAN


Our knowledge of the immunoglobulins has expanded greatly over the years and recently, as the three-dimensional structures became known, much greater emphasis has been placed on understanding the molecular processes involved in generating and regulating immunoglobulin expression. This book offers a comprehensive insight into these mechanisms, provided by leading researchers in the field.

The format of the book is not particularly user friendly, being so tightly packed with information, but the comprehensive referencing associated with each chapter is excellent. Indeed, it is a pity that the constant use of author and date reference citations breaks up otherwise eminently readable text.

The coverage of B cell development is extensive and detailed, encompassing in several chapters the complex roles of the B cell receptor, cytokines, and stromal cell influences. The presentation is marred only in some instances by overcomplex diagrams that could have been more informative if presented better. The chapters on immunoglobulin repertoires in a variety of species provides a basis for solid comparisons of the molecular mechanisms used to generate diversity and the evolutionary development of the immunoglobulins. It is good to see a whole chapter devoted to the lower vertebrates, providing a certain perspective to the human and mouse systems so fully described elsewhere in the book. The unique contributions provided through studying immunoglobulin transgenic mice are discussed, as are B cell tolerance, and autoantibody V region use. These topics, however, are not covered as extensively as the earlier chapters on developmental controls and organisation of immunoglobulin genes. I think this book is, on the whole, an excellent reference text for anyone wishing to know more about the immunoglobulins and I would certainly recommend it.

PADDY TGIGME


Molecular Diagnosis of Cancer is a book from the Methods in Molecular Medicine series. It is targeted at clinicians and scientists as an introduction to the application of molecular pathology in a diagnostic setting.

The book is split into three sections. Part 1 is dedicated to the use of PCR based techniques in the diagnosis of haematological malignancy. This section illustrates the application of specific methods to the detection of genetic abnormalities. Chapters include PCR for gene rearrangements in minimal residual disease in childhood ALL and for t(14;18) translocation in follicular lymphoma, reverse transcriptase PCR for detection of BCR-ABL in haematological malignancies, PML/ 

RAR-a in acute promyelocytic leukaemia, NPM-ALK for t(2:5) in non-Hodgkin's lymphoma, and 11.q23 breakpoints involving the MLL gene in acute leukaemia.

Part 2 gives examples of the application of molecular biological techniques to solid tumours. This covers identification of mutations of the tumour suppressor genes in retinoblastoma and Wilms's tumour (WT1).

Part 3 examines general techniques for cancer analysis. This section gives examples of molecular based techniques that can be applied to all areas of the molecular biology of tumours. Techniques covered in this section include single-strand conformation polymorphism mutation analysis, fluorescence in situ hybridisation, comparative genomic hybridisation, in situ hybridisation, and apoptosis detection by DNA analysis.

Each section of the book uses specific examples to illustrate the efficacy of the techniques employed by the authors. Each chapter gives full details of the background for the experimental work, the reagents required, and protocols for the methods. This form of presentation is attractive both to newcomers to the field and those with some experience in diagnostic molecular pathology. A notable absence is the use of in situ PCR based techniques, which are becoming of interest in many areas of pathology.

The use of specific diagnostic situations to demonstrate the use of a technique helps to provide a model for how each method can be applied, and gives an insight into how it may be applied to diagnosis and monitoring of malignant disease.

The book is well thought out and provides a suitable level of information to anyone interested in the use of molecular pathology in diagnosis. It is interesting both as a general text and as a guideline for setting up specific diagnostic tests. In general this book is very informative while still being easy to read. I would recommend it to anyone who has an interest in molecular diagnosis in pathology.

JOATES

Mol Path: first published as 10.1136/mp.50.6.329-c on 1 December 1997. Downloaded from http://mp.bmj.com/ on April 29, 2021 by guest. Protected by copyright.