Age related decrease of NOR activity in bone marrow metaphase chromosomes from healthy individuals

Estela Pedrazzini, Nikolai Mamaev, Irma Slavutsky

Abstract

Aims—To present data obtained from human bone marrow preparations from healthy individuals showing that the proportion of metaphases with silver stained nucleolar organizer region (AgNOR) chromosomes is associated with the age of the donor.

Methods—Bone marrow preparations from eight Russian and 10 Argentinian healthy individuals donating bone marrow for heterologous transplantation were studied by silver staining. The Russian bone marrow preparations were used directly, while the bone marrow specimens from Argentinian donors were incubated for 24 hours at 37°C in F-10 medium with 15% fetal bovine serum. The slides were silver stained by the one step method of Howell and Black with slight modifications. Thirty metaphases with clearly defined D and G group chromosomes were scored for the numbers of AgNORs. All metaphases that were adjacent to silver stained interphase nuclei were analysed to assess the percentage of AgNOR positive mitoses. The Kruskal Wallis test and Kendall’s rank correlation coefficient (rK) were used to assess the relation between age and the percentage of AgNOR positive cells.

Results—The mean numbers (SE) of AgNORs per metaphase were 5.06 (0.17) and 5.56 (0.23) for the Russian and Argentinian groups, respectively, with no significant differences between the two groups. The common percentage of AgNOR positive cells decreased significantly as a function of age, with an rK = −0.57 (p < 0.0012).

Conclusions—The percentages of AgNOR negative metaphases in bone marrow from healthy individuals is strongly associated with age and this may be related to age related telomere loss.

Keywords: nucleolar organizer regions; silver staining; healthy human beings; aging

A cytochemical silver nitrate technique can be used effectively to monitor the activity of ribosomal RNA cistrons because a subset of nucleolar argyrophilic proteins are associated with transcriptionally active rDNA. According to recent findings, the proteins responsible for nucleolar organizer regions silver staining (AgNORs) on metaphase chromosomes include RNA polymerase I, topoisomerase I, transcription factor UBF, and probably nucleolin. Studies on the AgNOR staining pattern in bone marrow cells from donors and patients with haematological malignancies have revealed significant decreases of modal AgNOR classes as well as a high percentage of AgNOR negative mitoses (mean, 48%; range, 34–70%) compared with PHA stimulated lymphocytes from the same subjects.

Recently, Pedrazzini and Slavutsky noted that the AgNOR pattern of normal bone marrow cells is age related, but that this phenomenon is not seen in patients with mycosis fungoides and acute lymphoblastic leukaemia (unpublished data). Additional analysis of our previously published data also supported this conclusion.

Materials and methods

Bone marrow samples were obtained from eight Russian and 10 Argentinian healthy individuals donating bone marrow for heterologous transplantation (table 1).

The Russian bone marrow preparations were made from aspirates of the sternum, fixed in 3:1 methanol:acetic acid for 10 minutes, and air dried smears. Bone marrow samples from Argentinian donors were incubated for 24 hours at 37°C in F-10 medium with 15% fetal bovine serum. Colcemid (final concentration 0.1 µg/ml) was added 40 minutes before harvesting. Cells were incubated in 0.075 M KCl for 20 minutes at 37°C, pelleted, and fixed in methanol:glacial acetic acid (3:1). After the cells had been washed three times in the fixative, air dried slides were prepared. In both cases, the slides were stained with the one step method of Howell and Black that uses gelatine as the silver colloidal protector and pretreatment in 2 M formic acid for 10 minutes to improve the evaluation of AgNORs in bone marrow cells. A total of 30 metaphases with clearly defined D and G group chromosomes were scored for the mean number of AgNORs. All metaphases that were adjacent to...
silver stained interphase nuclei were analysed to assess the percentages of AgNOR positive mitoses.

Because the data for the bone marrow samples were not distributed normally, we used the Kruskal-Wallis test to compare groups and the Kendall’s rank correlation coefficient (rK) for the relation between age and the percentage of AgNOR positive cells.

Results
Results from the silver staining of normal bone marrow cells are summarised in table 1. Among the 10 potentially stainable chromosomes the mean (SE) numbers of AgNORs per metaphase were 5.06 (0.17) and 5.56 (0.23) for the Russian and Argentinian groups, respectively. There were no significant differences between the two groups, with a mean (SE) of 5.34 (0.15) AgNOR chromosomes per bone marrow cell when the two groups were analysed together. As regards the proportion of mitoses demonstrating silver staining on at least one chromosome, when the two groups were analysed together the mean (SE) was 55.1% (3.7%); when the two groups were analysed separately, the results were 65.6% (4.5%) and 46.8% (5.7%) for the Russian and Argentinian groups, respectively, with a significant difference between them (p < 0.04). Upon analysis, it was apparent that each group had a different mean age (p < 0.01); accordingly, we examined the relation between the percentage of AgNOR positive mitoses and the age of the bone marrow donors. We found that the percentage of AgNOR positive cells decreased significantly in function with age, with an rK = −0.57 (p < 0.0012) (fig 1).

Discussion
The above results show that the percentage of AgNOR negative metaphases in bone marrow from healthy individuals is associated strongly with age. In relation to these findings, it must be remembered that AgNOR negative mitoses in normal bone marrow are mainly present in erythroid and granulocytic elements. The latter finding has been shown by us in patients with multiple myeloma, where all mitoses of diseased cells (with chromosome markers) were AgNOR positive, whereas the majority of AgNOR negative mitoses were in cells with a normal karyotype.

As discussed, the technical approaches used by the two laboratories participating in this study were not identical. Nevertheless, similar data were obtained, although the more active erythroid precursors appear to be the main mitotic cells in the bone marrow preparations from the Russian donors. On the other hand, the great majority of mitoses from the short term bone marrow cultures of the Argentinian controls are of granulocytic origin because cultured erythroid cells cannot grow effectively without the addition of erythropoietin. Accordingly, it is not surprising, that the mean number (SE) of AgNOR positive metaphases in the Russian samples was significantly higher than that found in the Argentinian samples (65.6% (4.5%) and 46.8% (7%), respectively; p < 0.04). These findings are in agreement with earlier published data related to age dependent decreases in the numbers of AgNORs in PHA stimulated human lymphocytes.

The relevant investigators related these findings to either a progressive decrease of lymphocyte proliferative activity, or a hypothetical progressive inactivation of rRNA genes with aging. Also, there is little evidence of an expected age related decrease in proliferative activity of erythroid and granulocytic precursors. Meanwhile, there is increasing evidence that anaemia and leucocyte abnormalities in otherwise healthy elderly patients are not a normal physiological consequence of aging, but rather result from multiple insults and increased haemopoietic demands.

In the light of these controversial ideas it seems that there may be a relation between the number of AgNORs in interphase nuclei and their indices of proliferative activity. This evidence is indirect, despite the fact that nucleolar argentophilic proteins such as RNA polymerase I, topoisomerase IIα, transcription factor UBF, and nucleolin can be good markers of cell proliferation. It is likely that cells need rDNA expression, ribosome formation, and protein synthesis not only for proliferation but also for differentiation, maturation, repair, and so on. Hence, the age related AgNOR positive proportion of cells may decrease in

Table 1 Frequency of AgNORs in bone marrow cells

<table>
<thead>
<tr>
<th>Sample</th>
<th>Age/sex</th>
<th>Mean number of AgNORs</th>
<th>Cells scored (n)</th>
<th>AgNOR+ cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1</td>
<td>8/F</td>
<td>7.37</td>
<td>230</td>
<td>58.7</td>
</tr>
<tr>
<td>*2</td>
<td>14/M</td>
<td>4.30</td>
<td>136</td>
<td>60.0</td>
</tr>
<tr>
<td>*3</td>
<td>16/M</td>
<td>4.80</td>
<td>34</td>
<td>89.5</td>
</tr>
<tr>
<td>*4</td>
<td>17/M</td>
<td>5.40</td>
<td>43</td>
<td>60.0</td>
</tr>
<tr>
<td>*5</td>
<td>18/M</td>
<td>5.40</td>
<td>82</td>
<td>78.8</td>
</tr>
<tr>
<td>*6</td>
<td>18/M</td>
<td>5.40</td>
<td>89</td>
<td>53.7</td>
</tr>
<tr>
<td>*7</td>
<td>22/M</td>
<td>5.37</td>
<td>200</td>
<td>75.0</td>
</tr>
<tr>
<td>*8</td>
<td>22/F</td>
<td>4.40</td>
<td>70</td>
<td>68.6</td>
</tr>
<tr>
<td>*9</td>
<td>22/M</td>
<td>5.40</td>
<td>111</td>
<td>56.0</td>
</tr>
<tr>
<td>*10</td>
<td>24/M</td>
<td>5.80</td>
<td>178</td>
<td>64.6</td>
</tr>
<tr>
<td>*11</td>
<td>25/M</td>
<td>5.40</td>
<td>131</td>
<td>56.0</td>
</tr>
<tr>
<td>*12</td>
<td>29/F</td>
<td>5.30</td>
<td>640</td>
<td>49.6</td>
</tr>
<tr>
<td>*13</td>
<td>29/M</td>
<td>4.97</td>
<td>286</td>
<td>49.1</td>
</tr>
<tr>
<td>*14</td>
<td>35/M</td>
<td>5.20</td>
<td>548</td>
<td>35.6</td>
</tr>
<tr>
<td>*15</td>
<td>38/F</td>
<td>4.77</td>
<td>254</td>
<td>22.0</td>
</tr>
<tr>
<td>*16</td>
<td>40/F</td>
<td>5.80</td>
<td>355</td>
<td>20.0</td>
</tr>
<tr>
<td>*17</td>
<td>40/M</td>
<td>5.43</td>
<td>307</td>
<td>56.0</td>
</tr>
<tr>
<td>*18</td>
<td>53/M</td>
<td>5.20</td>
<td>368</td>
<td>37.1</td>
</tr>
<tr>
<td>Mean (SE)</td>
<td>19.0 (1.3)</td>
<td>5.34 (0.15)</td>
<td>55.1 (3.7)</td>
<td></td>
</tr>
</tbody>
</table>

*Argentine donor; †Russian donor.

Discussion
The above results show that the percentage of AgNOR negative metaphases in bone marrow from healthy individuals is associated strongly with age. In relation to these findings, it must be remembered that AgNOR negative mitoses in normal bone marrow are mainly present in erythroid and granulocytic elements. The latter finding has been shown by us in patients with multiple myeloma, where all mitoses of diseased cells (with chromosome markers) were AgNOR positive, whereas the majority of AgNOR negative mitoses were in cells with a normal karyotype. As discussed, the technical approaches used by the two laboratories participating in this study were not identical. Nevertheless, similar data were obtained, although the more active erythroid precursors appear to be the main mitotic cells in the bone marrow preparations from the Russian donors. On the other hand, the great majority of mitoses from the short term bone marrow cultures of the Argentinian controls are of granulocytic origin because cultured erythroid cells cannot grow effectively without the addition of erythropoietin. Accordingly, it is not surprising, that the mean number (SE) of AgNOR positive metaphases in the Russian samples was significantly higher than that found in the Argentinian samples (65.6% (4.5%) and 46.8% (7%), respectively; p < 0.04). These findings are in agreement with earlier published data related to age dependent decreases in the numbers of AgNORs in PHA stimulated human lymphocytes. The relevant investigators related these findings to either a progressive decrease of lymphocyte proliferative activity, or a hypothetical progressive inactivation of rRNA genes with aging. Also, there is little evidence of an expected age related decrease in proliferative activity of erythroid and granulocytic precursors. Meanwhile, there is increasing evidence that anaemia and leucocyte abnormalities in otherwise healthy elderly patients are not a normal physiological consequence of aging, but rather result from multiple insults and increased haemopoietic demands.

In the light of these controversial ideas it seems that there may be a relation between the number of AgNORs in interphase nuclei and their indices of proliferative activity. This evidence is indirect, despite the fact that nucleolar argentophilic proteins such as RNA polymerase I, topoisomerase IIα, transcription factor UBF, and nucleolin can be good markers of cell proliferation. It is likely that cells need rDNA expression, ribosome formation, and protein synthesis not only for proliferation but also for differentiation, maturation, repair, and so on. Hence, the age related AgNOR positive proportion of cells may decrease in

Discussion
The above results show that the percentage of AgNOR negative metaphases in bone marrow from healthy individuals is associated strongly with age. In relation to these findings, it must be remembered that AgNOR negative mitoses in normal bone marrow are mainly present in erythroid and granulocytic elements. The latter finding has been shown by us in patients with multiple myeloma, where all mitoses of diseased cells (with chromosome markers) were AgNOR positive, whereas the majority of AgNOR negative mitoses were in cells with a normal karyotype.

As discussed, the technical approaches used by the two laboratories participating in this study were not identical. Nevertheless, similar data were obtained, although the more active erythroid precursors appear to be the main mitotic cells in the bone marrow preparations from the Russian donors. On the other hand, the great majority of mitoses from the short term bone marrow cultures of the Argentinian controls are of granulocytic origin because cultured erythroid cells cannot grow effectively without the addition of erythropoietin. Accordingly, it is not surprising, that the mean number (SE) of AgNOR positive metaphases in the Russian samples was significantly higher than that found in the Argentinian samples (65.6% (4.5%) and 46.8% (7%), respectively; p < 0.04). These findings are in agreement with earlier published data related to age dependent decreases in the numbers of AgNORs in PHA stimulated human lymphocytes. The relevant investigators related these findings to either a progressive decrease of lymphocyte proliferative activity, or a hypothetical progressive inactivation of rRNA genes with aging. Also, there is little evidence of an expected age related decrease in proliferative activity of erythroid and granulocytic precursors. Meanwhile, there is increasing evidence that anaemia and leucocyte abnormalities in otherwise healthy elderly patients are not a normal physiological consequence of aging, but rather result from multiple insults and increased haemopoietic demands.

In the light of these controversial ideas it seems that there may be a relation between the number of AgNORs in interphase nuclei and their indices of proliferative activity. This evidence is indirect, despite the fact that nucleolar argentophilic proteins such as RNA polymerase I, topoisomerase IIα, transcription factor UBF, and nucleolin can be good markers of cell proliferation. It is likely that cells need rDNA expression, ribosome formation, and protein synthesis not only for proliferation but also for differentiation, maturation, repair, and so on. Hence, the age related AgNOR positive proportion of cells may decrease in

Fig 1 Scatter diagram showing the correlation between the percentage of AgNOR positive mitoses and aging. There is a significant negative correlation, rK = −0.57, p < 0.0012.
AgerelateddecreaseofNORactivityinbonemarrowmetaphasechromosomes

haemopoieticprecursors-tocompensate/repairhaemopoiesisinrelationtoinsultstothe
haemopoietic system without a decrease in the proliferative activity of erythroid and granulo-
cyticlineages. This would be in agreement with many clinical findings.27–32

A possible factor that could be very closely related to bone marrow failure in the elderly is
telomere loss.55–57 It is known that these highly repeated genetic elements are located at the
ends of eukaryotic chromosomes.58 They are necessary for the preservation of genome
stability and cell viability because they prevent aberrant recombination and degradation
ofDNA.Duringaging,telomernumbersde-
crease significantly because of replication problems.59 Also, this age related telomere loss
in germ cells, tumour cells, and leukaemic cells is actively compensated for by a high level
of telomerase activity.40–45 Theoretically, telomer-
ingermcells,tumourcells,andleukaemiccells
aberrant recombination and degradation of
telomere loss.33–37 It is known that these highly
activity.46 Therefore, thechangesrevealedhere
telomerase activity may be associated with both the
ase activity may be associated with both the
level ofcellularproliferation and tDNAcistronactivity.
Therefore, the changes revealed in the age related decrease in the proportion
ofAgNOR staining on metaphase chromosomes in bone marrow erythroid and granulocytic
elements may be explained partly by telomere alterations. Such a hypothesis explains why the
number ofAgNOR positive mitoses in bone
marrow samples from patients with mycosis fungoides60 and acute lymphoblastic leukaemia
(Pedrazzini and Slavutsky, unpublished data) are not age related. In these diseases, mitot-
ically active cells are represented by more immature haemopoietic elements whose telo-
merase activity is higher than maturing erythroid and granulocytic progenitors. Future
investigations should show whether or not the
hypothesis is correct.

This work was supported financially by grants from
Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET) and from Universidad Nacional de La Plata,
Argentina.

2 Roussel P, Hernandez-Verdu D. Identification of Ag-NOR proteins,
molten of proliferation related to ribosomal gene
3 Kohno S, Abe S, Matsui S, Sandberg AA. Chromosomes and
causation of human cancer and leukemia. XXXVII.
Nucleolus organizers on the Ph1 chromosome in
chronic myelocytic leukemia. Cancer Genet Cytogenet
4 Mamaev NN, Mamaeva SE, Liburkina IL, Kozlova TV,
Makarkina GN. Nucleolar organizer region activity in human normal and leukemic cells
[Russian]. Tsitologiya 1984;26:46–51.
5 Mamaev NN, Liburkina IL, Kozlova TV, Medvedeva NV,
Makarkina GN. Nucleolar organizer region activity in human normal and leukemic cells
[Russian]. Tsitologiya 1984;26:46–51.
6 Mamaev NN, Salogub GN, Kozlova TV, Kosolosk AV.
Interphase riboso-
7 Gilberti MFP, Mette K, Lorand-Metzte I. Changes of nucleolar organizer regions in granulopoietic precursors
during the course of chronic myeloid leukemia. Ann Haema-
8 Mamaev NN, Salogub GN, Nefedova IB. Interphase riboso-
mal RNA cistron silver staining in refractory anemia with
9 Howell WM, Black DA. Controlled silver-staining of nucleolus organizer regions with a protective colloid
developer: a 1-step method. Expertenti 1980;36:
1014–15.
10 Denton TE, Liem SL, Cheng KM, Barrett JV. The relation-
ship between aging and ribosomal gene activity in human
lymphocytes as evidenced by silver staining. Mech Aging Dev 1981;15:
7–17.
11 Lezhava TA. Age-related dependence of human nucleolar organizer regions [Russian]. Cytologia Genetics
12 Butler MG, Lane JR. Effects of age, sex and multiple endo-
13 Lezhava TA, Dvalishvili N. Cytogenetic and biochemical studies on the nucleolus organizing regions of chromo-
14 Murasko DM, Weiner P, Kaye D. Decline in mitogen
induced proliferation of lymphocytes with increasing age.
15 Mauch P, Botnick LE, Hannion EC, Oggay J, Hellman S.
The effect of age on hematopoiesis. Aging Clin Exp Res
16 Harskot RJ, Smith EB, Ketter CN. Normal variation with
aging of the amount of hematopoietic tissue in bone
marrow from anterior iliac crest. Am J Clin Pathol 1965;43:
325–33.
17 Lipshitz DA, Udupa KB, Milton KY, Thompson CO. Effect
18 Anisimov VN. Caringenogenesis and aging. Vol. 1. Boca Raton:
19 Nikoloski EB. Hagerburg R, Landahl S, Svanborg A,
Westin J. Haematological abnormalities and reference
20 Ames BN, Gold LS. Endogenous mutagens and the causes of
aging and cancer. Mutat Res 1991;256;3–16.
21 Charta GS, Andrews RG, Rodger E, Schrag M, Hammond
WP, Dale DC. Hematopoietic progenitors and aging:
alterations in granulocytic precursors and responsiveness
to recombinant human G-CSF, GM-CSF, and IL-3.
22 Shay JW, Botnick LE, Hannon EC, Oggay J, Hellman S.
23 Quaglino D, Ginaldi L, Furia N, De Martinis M. The
effect of age on hematopoiesis. Aging Clin Exp Res
24 Chatta GS, Andrews RG, Rodger E, Schrag M, Hammond
WP, Dale DC. Hematopoietic progenitors and aging:
alterations in granulocytic precursors and responsiveness
to recombinant human G-CSF, GM-CSF, and IL-3. J
Gerontal 1993;48:M207–12.
25 Zazin H, Dragowska W, Allopp RC, Thomas TE, Harley
CB, Lansorg PM. Evidence for a mitotic clock in human
hematopoietic stem cells: loss of telomeric DNA with age.
Cancer Res 1991;51:5720–7
26 Shay JW, Botnick LE, Hannon EC, Oggay J, Hellman S.
27 Lipshitz DA, Udupa KB, Milton KY, Thompson CO. Effect
28 Anisimov VN. Caringenogenesis and aging. Vol. 1. Boca Raton:
29 Nikoloski EB. Hagerburg R, Landahl S, Svanborg A,
Westin J. Haematological abnormalities and reference
30 Ames BN, Gold LS. Endogenous mutagens and the causes of
aging and cancer. Mutat Res 1991;256;3–16.
31 Charta GS, Andrews RG, Rodger E, Schrag M, Hammond
WP, Dale DC. Hematopoietic progenitors and aging:
alterations in granulocytic precursors and responsiveness
to recombinant human G-CSF, GM-CSF, and IL-3. J
Gerontal 1993;48:M207–12.
32 Shay JW, Botnick LE, Hannon EC, Oggay J, Hellman S.