Simultaneous detection and strain differentiation of *Mycobacterium tuberculosis* complex in paraffin wax embedded tissues and in stained microscopic preparations

A G M van der Zanden, A H Hoentjen, F G C Heilmann, E F Weltevreden, L M Schouts, J D A van Embden

Abstract

Aims—To detect and differentiate *Mycobacterium tuberculosis* simultaneously by polymerase chain reaction (PCR) in clinical samples prepared for histopathological analysis and for microscopic detection of acid fast bacteria.

Methods—Paraffin wax embedded tissue samples and Ziehl-Neelsen (ZN) and auramine stained microscopic preparations from culture positive tuberculosis patients were subjected to DNA extraction and amplification by PCR. PCR was performed with primers specific for direct repeats and the product was detected by hybridisation to a set of 43 different oligonucleotides, a procedure designated as “spoligotyping”.

Results—*Mycobacterium tuberculosis* complex DNA was detected in all of the 23 paraffin wax embedded tissues analysed. Strain differentiation was possible in 20 of the 23 paraffin wax embedded tissues. *Mycobacterium tuberculosis* complex DNA was also detected and typed in eight of 10 ZN stained microscopic preparations. The hybridisation patterns obtained from virtually all of these samples were identical to those obtained from DNA extracted from cultures.

Conclusion—Simultaneous detection and strain differentiation of *M. tuberculosis* complex bacteria is possible in clinical samples prepared by current methods for microscopic and histopathological analysis, without the need to culture. The methodology described opens the way to rapid disclosure of outbreaks in high risk settings, such as hospitals and prisons, where dissemination of tuberculosis might be very fast as a result of a high prevalence of human immunodeficiency virus infected patients.

(Keywords: *Mycobacterium tuberculosis*, strain differentiation, spoligotyping)

Tuberculosis continues to be a major cause of morbidity and mortality throughout the world. Rapid detection, adequate treatment, and contact tracing to arrest further transmission are the key factors in the control of this infectious disease.

Laboratory diagnosis of tuberculosis relies on culture and direct examination of smears by the Ziehl-Neelsen (ZN) or auramine stain. Culture is sensitive, but time consuming, because of the slow growth rate of *Mycobacterium tuberculosis complex*. Microscopic detection of acid fast bacilli in stained ZN smears is rapid, but not very sensitive (at least 10^5 bacterial cells are needed), and is not specific for pathogenic mycobacteria. Therefore, in vitro nucleic acid amplification techniques have been introduced recently for rapid and sensitive diagnosis of *M tuberculosis* in clinical specimens. However, a limitation of the polymerase chain reaction (PCR) detection of *M tuberculosis complex* is the inability to differentiate strains by polymorphic genetic markers for outbreak investigations and other epidemiological purposes. Recently, we described a novel method that enables the simultaneous detection and typing of *M tuberculosis* to be carried out in clinical specimens. In this method, designated “spoligotyping” (from spacer oligotyping), we exploited the previously observed DNA polymorphism within the direct repeat (DR) locus of *M tuberculosis complex*. The DR locus contains multiple, well conserved 36 base pair (bp) direct repeats interspersed with non-repetitive spacer sequences, 34–41 bp in length. Spoligotyping involves the amplification by PCR of the whole DR region using the DR as a target for *M tuberculosis complex* specific DNA, followed by hybridisation of the amplified DNA to a set of 43 spacer oligonucleotides covalently linked to a membrane. Because clinical isolates vary in the presence or absence of particular spacers, the spoligo patterns obtained are strain specific. The direct repeats are extremely well conserved among *M tuberculosis complex* strains and because they are present as a multiple target for DNA amplification, spoligotyping is a specific method for the detection of *M tuberculosis complex*. Spoligotyping has been used successfully to detect and type *M tuberculosis* simultaneously in clinical materials such as sputum, bronchial lavages, and tissues. Application of spoligotyping to detect and type *M tuberculosis complex* on microscopic preparations, stained for the detection of acid fast bacilli, and on sections of paraffin wax embedded tissues would make it possible to determine the presence of pathogenic mycobacteria and to disclose outbreaks rapidly. This would be of particular value in institutions where
immunocompromised patients are found (such as hospitals housing human immunodeficiency virus (HIV) co-infected patients) because of the rapid progression of the disease and the spread of multidrug resistant strains. In our study we describe the use of spoligotyping to detect and type \textit{M tuberculosis} complex on stained microscopic preparations and in sections of paraffin wax embedded tissues.

Methods

SECTIONS AND MICROSCOPIC PREPARATIONS

Sections were cut from 23 formalin fixed, paraffin wax embedded tissues, originating from 21 different tuberculosis patients. The samples included materials from lung, lymph nodes, bone marrow, testis, and penis. The tissues had been embedded between one and 10 years ago and \textit{M tuberculosis} complex strains had been isolated successfully from all 21 patients.

Before cutting each paraffin wax embedded sample, a 14 \textmu m section of a negative tissue was cut to monitor for cross contamination during sectioning of the tissues. From each tissue we used two sections of 3 \textmu m for microscopic examination and three sections of 14 \textmu m for DNA extraction for spoligotyping in duplicate or triplicate.

For microscopic examination, one section was stained with ZN and screened for acid fast bacilli, and the other one was stained with haematoxylin and eosin for histopathological analysis.

ZN and auramine positive smears from \textit{M tuberculosis} culture positive sputum samples were used. The smears were made before the decontamination step of the samples and after decontamination with 0.5% Na-acetyl-L-cysteine/2% NaOH (NaLC/NaOH)11 or lauryl sulphate.11

BACTERIAL CULTURES

\textit{Mycobacterium tuberculosis} complex cultures isolated from the 23 patients had been stored between the para wax embedded tissues.18, 19 Briefly, a single section was mixed with 150 \textmu l of a Chelex suspension containing 5% Chelex-100, (Bio-Rad Laboratories, Hercules, California, USA), 0.01% lauryl sulphate (Sigma, Brunschwig Chemie, Amsterdam, The Netherlands), 1% Nonider P40 (Sigma), and 1% Tween 20 (Sigma). After thorough mixing, the samples were incubated for 30 minutes at 100°C. The samples were centrifuged for 10 minutes at 13,000 xg and the solution in between the paraffin upper layer and the Chelex particles was transferred to a fresh microcentrifuge tube and used for PCR.

DNA EXTRACTION FROM BACTERIAL CELLS

DNA extracts were prepared by suspending ~10 mg of wet bacterial cells in 100 \textmu l of sterile distilled water (Mallinckrodt, Baker, Deventer, The Netherlands) and heating in a water bath at 100°C for 30 minutes to kill the cells and to induce cell lysis.20 The cell debris was removed by centrifugation at 13,000 xg for two minutes. The samples were stored at ~20°C until used for DNA amplification.

Purified DNA extracts were prepared according to the Boom method.21

DNA EXTRACTION FROM ZN AND AURAMINE POSITIVE PREPARATIONS

Spoligotyping of microscopic preparations was performed on sputum smears from 20 patients.

The microscopic preparations were ZN or auramine stained. Before DNA extraction, all microscopic preparations were examined for acid fast bacilli and all were positive. The microscopic preparations were examined at 700x magnification with a visual field of 0.18 mm in diameter. All ZN stained preparations were rated as III on the Bronkhorst scale, which corresponds with an average of six mycobacteria in each visual field (40 visual fields were examined).12

After microscopic examination, the mineral oil was removed with xylene (Merck, Darmstadt, Germany). Stained microscopic preparations were scraped off the microscope slides after adding 25 \textmu l of sterile distilled water. Chelex suspension (75 \textmu l) was added and after thorough mixing the samples were incubated for 30 minutes at 100°C. The samples were centrifuged for 10 minutes at 13,000 xg. The supernatant was transferred to a fresh microcentrifuge tube and used for PCR directly.

SPOLIGOTYPING

An aliquot of 10 \textmu l of the extracted DNA from the cultured \textit{M tuberculosis} complex, 10 \textmu l and 1 \textmu l from the sections of paraffin wax embedded tissues, and 10 \textmu l and 2.5 \textmu l from

Positive displacement pipettes or filter tips were used throughout the procedure. All working surfaces were cleaned with 10% bleach solution (Lever Nederland BV, Capelle a/d Ijssel, The Netherlands). dUTP and uracil DNA glycosylase (UDG) (Gibco BRL) were used to prevent contamination with amplicons from previous reactions.17

The Chelex method was used for the isolation of DNA from 14 \textmu m sections of paraffin wax embedded tissues.18, 19 Briefly, a single section was mixed with 150 \textmu l of a Chelex suspension containing 5% Chelex-100, (Bio-Rad Laboratories, Hercules, California, USA), 0.01% lauryl sulphate (Sigma, Brunschwig Chemie, Amsterdam, The Netherlands), 1% Nonider P40 (Sigma), and 1% Tween 20 (Sigma). After thorough mixing, the samples were incubated for 30 minutes at 100°C. The samples were centrifuged for 10 minutes at 13,000 xg and the solution in between the paraffin upper layer and the Chelex particles was transferred to a fresh microcentrifuge tube and used for PCR.
the stained microscopic preparations were used in the PCR. PCR was performed as described by Kamerbeek et al., except that 3.0 mM MgCl₂, 50 pmol of each primer, and 15 mM Tris, pH 9.0, were used in the PCR mixture.

The extracted DNA was added to 50 µl of PCR mixture. The mixture was overlaid with one drop of mineral oil (Sigma) and incubated for 60 minutes at 37°C for uracil DNA glycosylase incubation; three minutes at 95°C for uracil DNA glycosylase inactivation⁷ and DNA denaturation; one minute at 57°C for primer annealing; and one minute at 72°C for primer extension. Cycling conditions were as follows: one minute at 95°C, one minute at 57°C, and 30 seconds at 72°C. Clinical samples were subjected to 45 cycles and DNA isolated from bacterial cultures was subjected to 25 cycles. PCR products were kept at −20°C until further analysis.

Spoligotyping for direct differentiation of Mycobacterium tuberculosis complex

Table 1 Spoligopatterns from DNA obtained from cultures and parafin wax embedded tissues of patients with culture proven tuberculosis

<table>
<thead>
<tr>
<th>Patient</th>
<th>Culture positive</th>
<th>Paraffin embedded tissue</th>
<th>Pathology</th>
<th>ZN staining</th>
<th>Spoligopattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lymph node</td>
<td>Lymph node</td>
<td>g/cn</td>
<td>Positive</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>Lung</td>
<td>Lung</td>
<td>8 Aug 86</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>Lung</td>
<td>Lung</td>
<td>13 Jul 88</td>
<td>g/cn</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>Urine</td>
<td>Testicle</td>
<td>10 Sep 90</td>
<td>g/cn</td>
<td>ab</td>
</tr>
<tr>
<td>5</td>
<td>Spumtor</td>
<td>Lung biopsy</td>
<td>20 Oct 86</td>
<td>g/cn</td>
<td>abc</td>
</tr>
<tr>
<td>6</td>
<td>Spumtor</td>
<td>Sputum</td>
<td>26 Jun 90</td>
<td>nsi</td>
<td>abc</td>
</tr>
<tr>
<td>7</td>
<td>Lung</td>
<td>Lung</td>
<td>14 Jun 91</td>
<td>g</td>
<td>abc</td>
</tr>
<tr>
<td>8</td>
<td>Lung</td>
<td>Lung</td>
<td>21 Nov 90</td>
<td>g/cn</td>
<td>abc</td>
</tr>
<tr>
<td>9</td>
<td>Bronchial washing</td>
<td>Lung</td>
<td>11 Jun 85</td>
<td>g</td>
<td>abc</td>
</tr>
<tr>
<td>10</td>
<td>Sputum</td>
<td>Lung</td>
<td>17 Nov 94</td>
<td>g</td>
<td>abc</td>
</tr>
<tr>
<td>11</td>
<td>Bronchial washing</td>
<td>Bronchial biopsy</td>
<td>14 Sep 89</td>
<td>g</td>
<td>abc</td>
</tr>
<tr>
<td>12</td>
<td>Abscess injection site</td>
<td>Lymph node (armpit)</td>
<td>11 Aug 92</td>
<td>g</td>
<td>abc</td>
</tr>
<tr>
<td>13</td>
<td>Lymph node (neck)</td>
<td>Lymph node (armpit)</td>
<td>29 Mar 83</td>
<td>g</td>
<td>abc</td>
</tr>
<tr>
<td>14</td>
<td>Lymph node</td>
<td>Lymph node</td>
<td>1 May 86</td>
<td>g</td>
<td>abc</td>
</tr>
<tr>
<td>15</td>
<td>Bronchial washing</td>
<td>Bronchial biopsy</td>
<td>12 Aug 91</td>
<td>g/cn</td>
<td>abc</td>
</tr>
<tr>
<td>16</td>
<td>Pus (origin unknown)</td>
<td>Lymph node (neck)</td>
<td>17 Apr 90</td>
<td>g/cn</td>
<td>abc</td>
</tr>
<tr>
<td>17</td>
<td>Pus vertebra</td>
<td>Bone marrow</td>
<td>6 May 93</td>
<td>n</td>
<td>abc</td>
</tr>
<tr>
<td>18</td>
<td>Lymph node</td>
<td>Lymph node</td>
<td>12 Aug 87</td>
<td>g/cn</td>
<td>abc</td>
</tr>
<tr>
<td>19</td>
<td>Lymph node</td>
<td>Lymph node</td>
<td>1 Aug 90</td>
<td>g</td>
<td>abc</td>
</tr>
<tr>
<td>20</td>
<td>Urine</td>
<td>Biopsy penis</td>
<td>14 Oct 87</td>
<td>g</td>
<td>abc</td>
</tr>
<tr>
<td>21</td>
<td>Pus lymph node</td>
<td>Lymph node</td>
<td>4 Jun 93</td>
<td>g</td>
<td>abc</td>
</tr>
</tbody>
</table>

Spoligo patterns obtained from DNA from cultures (a) and from paraffin wax embedded tissues (b, 10 µl; c, 1 µl used for spoligotyping). Pathology: cn, caseous necrosis; g, granulomas; ne, necrosis; nsi, non-specific inflammation. The spoligo patterns from the strains from patient 12 and 20 were characteristic for Mycobacterium bovis, consistent with the bacteriological determination of the corresponding culture.
PCR products were analysed by hybridisation using the reverse line blotting technique. After hybridisation, washing of the membrane and detection of hybridised DNA with peroxidase labelled streptavidin was performed as described previously, except that hybridisation was carried out in a hybridisation bag (Boehringer Mannheim, Mannheim, Germany) to keep the volume of the ECL detection reagent (Amersham International, Amersham, Buckinghamshire, UK) as small as possible.

Results
To spoligotype M tuberculosis from cultured cells we tested a simplified DNA extraction procedure, which involves only a heating and a centrifugation step. DNA obtained by this quick procedure was compared with DNA extracted according to the method described by Boom. DNA was extracted from 10 cultures using both methods. Spoligotyping using both types of extracts resulted in identical hybridisation patterns (data not shown).

SENSITIVITY OF SPOLIGOTYPING IN PARAFFIN WAX EMBEDDED TISSUES
Twenty three paraffin wax embedded tissue samples from 21 tuberculosis patients were investigated by spoligotyping. All patients had been diagnosed as having tuberculosis and the diagnosis had been confirmed by the culture of M tuberculosis complex. In 14 of these tissue samples, acid fast bacteria had been demonstrated by ZN staining (table 1). Each DNA extract of the 23 clinical samples was subjected to amplification using 10 µl and 1 µl tissue DNA extract. The resulting spoligo patterns were compared with those obtained by using DNA from the strains of the corresponding patients. Table 1 shows the results. We detected M tuberculosis complex DNA by spoligotyping in all 23 samples. The spoligo patterns of 20 of the 23 clinical samples were identical to those of the corresponding cultured bacterial cells using either 10 µl or 1 µl of DNA for the PCR. Truncated spoligo patterns were obtained from three samples using 10 µl of DNA extract and from nine samples using 1 µl of DNA extract. In addition, one sample was negative using 1 µl of DNA. The use of 1 µl of DNA resulted in a more complete spoligo pattern compared with the use of 10 µl of DNA extract in one sample only (patient 16; pus).

Two samples were collected from the same patient (patient 6) and the time that elapsed between these two samples being taken was two years. The spoligo patterns obtained from both samples were identical, indicating that the patient remained infected with the same M tuberculosis strain during this period of time. From all patients, except one, the clinical samples for culturing and the paraffin wax embedded tissues originated from the same body site. The exception was patient 20, from whom the culture was obtained three years after the tissue biopsy (table 1). Again, the spoligo patterns were identical, showing that the patient had remained infected with the same M tuberculosis complex strain.

The spoligo patterns obtained from patients 12 and 20 showed no hybridisation with any of the five terminal 3’ spacers, which is characteristic for M bovis. Patient 12 had been vaccinated previously with M bovis BCG, and the abscess corresponded to the site of BCG injection. The spoligo type of the culture obtained from patient 12 is identical to that of M bovis BCG except for the presence of spacer 16 in the patient sample.

SPOLIGOTYPING USING STAINED MICROSCOPIC PREPARATIONS
DNA extracts obtained from sputum samples and ZN and auramine stained microscopic preparations were subjected to spoligotyping.
Figures 1 and 2 show the results. Both stained and unstained preparations, and DNA from the corresponding cultured bacterial cells resulted in the same spoligopatterns. Furthermore, these spoligopatterns were identical, irrespective of decontamination of the samples either by NaLC/NaOH or lauryl sulphate. Only a single sample resulted in a partial spoligopattern. In the latter sample (fig 1; lane 19) one of the hybridisation reactions was very weak.

Spoligotyping on extracts obtained from 10 ZN preparations recorded as III in the Bronkhorst scale resulted in eight complete spoligopatterns and in two partial spoligopatterns (data not shown). Spoligotyping of five auramine stained preparations resulted in complete spoligopatterns (fig 2).

Discussion

Our study shows for the first time the feasibility of simultaneous detection and typing of *M. tuberculosis* retrospectively in tissues prepared for histopathological analysis and in stained microscopic preparations. We showed that the spoligotypes obtained from such materials are identical to those obtained with cultures from the corresponding patients.

The simultaneous detection and typing of *M. tuberculosis* complex in clinical samples offers the possibility of rapidly disclosing outbreaks of tuberculosis, without the need to change the methods traditionally used in the laboratory for the handling and preparation of clinical samples. Rapid disclosure of transmission is of particular use in cases where transmission within institutions, such as hospitals and prisons, is suspected.

Spoligotyping also enables the retrospective analysis of stored clinical samples and has shown that the Beijing genotype of *M. tuberculosis*, which is prevalent in South East Asia, was also the prevalent type in China 40 years ago. The use of stained microscopic preparations as a target for DNA amplification of *M. tuberculosis* DNA might also be exploited to monitor drug resistance in the framework of tuberculosis control programmes. For such a purpose, stained microscopic preparations could be shipped to a central facility where mutations can be determined in drug target genes, such as rpoB and katG, which lead to (multi)drug resistant tuberculosis. Experiments using the technique of reverse line blotting are in progress to disclose drug resistance tuberculosis from DNA amplified from stained microscopic preparations.

Previously, we showed that spoligotyping using low DNA concentrations close to the detection limit often results in incomplete hybridisation patterns. This might be a result of the presence of single copies of fragments of the partial DR region or because of shearing of the DNA. In our present study the same phenomenon was observed and truncated spoligo patterns were obtained when the amount of DNA in the PCR was below 10 fg, which is equivalent to the amount of DNA from two mycobacterial cells. This quantity corresponds to the sensitivity observed in other PCR studies for reliable detection of *M. tuberculosis*. False positive reactivity is one of the major drawbacks in PCR methods for detection. To prevent contamination with PCR products from previous amplifications, we included dUTP and uracil DNA glycosylase in our
We thank A. Bunschoten, P. de Haas, A. van der Zee, and A. Bergmans for helpful advice; H. Ardesch-Hobert, K. Roseboom, and I. N’t Yeld for excellent technical assistance; N. Tiemessen for providing the sections of paraffin wax-embedded tissues; and P. van Es for help in preparing the manuscript. This work was supported by the European Community Programme for providing these sections of paraffin-embedded tissues. Nuclear Acids Res 1990;18:937–8.

