Genetic risk factors in Alzheimer’s disease

L Tilley, K Morgan, N Kalsheker

Abstract
Following a brief introduction and discussion of the pathological features of Alzheimer’s disease, the main emphasis of this review article will be the genetic factors that have been implicated in this disease. These can be divided into two main categories. First, the three genes in which mutations are known to result in early onset autosomal dominant familial Alzheimer’s disease will be discussed. These are well characterised but account for only a small proportion of Alzheimer’s disease cases. Late onset, sporadic Alzheimer’s disease is more common and evidence suggests that there is a genetic component to this type of disease. A number of genetic risk factors have been implicated that might increase the risk of developing sporadic disease. Many of these are controversial and studies have shown conflicting results, which are discussed in this section. Finally, a brief discussion of some of the mechanisms suggested to play a role in the pathogenesis of Alzheimer’s disease is included. It is hoped that this will show why particular genes have been implicated in Alzheimer’s disease and how they might be able to influence the development of the disease.

Keywords: Alzheimer’s disease; susceptibility genes; genetic risk factors

Alzheimer’s disease is characterised by progressive dementia beginning in middle to late life, with death occurring an average of 8–10 years after diagnosis. The clinical manifestations of the disease are extremely variable, with symptoms including memory loss, confusion, personality changes, impaired coordination, and speech problems.

Alzheimer’s disease can be categorised according to its age of onset or mode of inheritance. The early onset disease is defined as having an age of onset before 65 years of age, and these cases are usually familial, being inherited in an autosomal dominant fashion. This type of Alzheimer’s disease, known as familial Alzheimer’s disease is rare, accounting for ~10% of all Alzheimer’s disease cases. Most Alzheimer’s disease cases are of the late onset type, occurring in individuals over 65 years of age, and are sporadic, with no strong family history.

Pathological features of Alzheimer’s disease
Pathologically, the Alzheimer’s disease brain is characterised by two types of lesion: senile or neuritic plaques and neurofibrillary tangles. It has been shown that intellectual decline correlates with the densities of neurofibrillary tangles and senile plaques in the diseased brain. It is believed that the formation of these lesions is likely to result in the destruction of cell bodies, dendrites, and synapses, thus leading to severe impairment of neurotransmission and resulting in a decline in cognitive abilities.

SENILE PLAQUES
Senile plaques consist of a spherical extracellular core of proteinaceous fibrillar deposits, or amyloid, surrounded by degenerating nerve cell processes (fig 1). They are found particularly in the hippocampus, neocortex, and amygdala, and in the walls of cerebral and meningeal blood vessels. The predominant protein in the senile plaque core is a 4 kDa peptide, known as Aβ, β-amyloid, A4, or β/A4. Aβ contains between 39 and 43 amino acids, differing at the C-terminus, with the 42 amino acid form being the most predominant form in amyloid deposits. Aβ is derived from a larger precursor protein known as the amyloid precursor protein (βAPP) via proteolytic cleavage.

In addition to Aβ, a number of other senile plaque components have been identified. The
Hyperphosphorylated tau in neurofibrillary tangles is also known to be ubiquitinated, suggesting a role for the ubiquitin dependant proteolysis pathway in Alzheimer's disease.

Genetics of Alzheimer's disease
In a number of families Alzheimer's disease is inherited as an autosomal dominant disorder, although in most cases inheritance appears to be multifactorial. Monozygotic twin studies indicate a variable concordance of between 18% and 41%, showing that Alzheimer's disease cannot be explained completely by a single autosomal dominant gene. A relative risk of 3.5 has been demonstrated for those with at least one first degree relative suffering from dementia.

Autosomal dominant gene mutations
Three genes have been identified to date in which mutations result in early onset familial Alzheimer's disease, inherited in an autosomal dominant fashion. These are the amyloid precursor protein (APP), presenilin 1 (PS-1), and PS-2 genes (table 1).

The APP gene
The APP gene maps to chromosome 21q21.1, and mutations in this gene are estimated to account for up to 5% of familial Alzheimer's disease cases. A number of mutations have been identified, at codons 717 and 670/671, and 692 and 693. Mutations in the APP gene lead to early onset disease with age of onset typically between 43 and 62 years.

Mutations in the APP gene might result in altered metabolism of APP, leading to increased production of the \(\alpha \)-amyloid protein, or an increased production of the 42 amino acid form of \(\alpha \)-amyloid protein \(\beta \) (A\(\beta \)). This is the predominant form in senile plaques, and is thought to be more amyloidogenic, forming amyloid fibrils more rapidly than the shorter forms of A\(\beta \).

The PS-1 gene
A second familial Alzheimer's disease locus was subsequently identified as S182 or PS-1, and mutations in this gene are thought to cause up to 80% of familial Alzheimer's disease cases, with onset as early as 29 years of age, ranging to 62 years of age. To date, more than 35 missense mutations, and one in frame deletion have been identified in the PS-1 gene in affected families.

The fact that most PS mutations are missense ones suggests that Alzheimer's disease pathology is a result, not of the absence of the PS-1 gene product, but of its abnormal functioning as a result of the mutation. The function of the PS-1 protein is unknown, but it is known to be a transmembrane protein and, therefore, might function as a cell surface receptor, ion channel, or membrane structural protein. The PS-1 protein is homologous to SEL-12 in Caenorhabditis elegans, a protein known to be involved in cell signalling during development. The PS-1 gene product is known to be essential during development because

Table 1
Genes involved in early onset, autosomal dominant familial Alzheimer's disease

<table>
<thead>
<tr>
<th>Chromosomal location</th>
<th>Gene</th>
<th>Estimated FAD cases</th>
<th>Age of onset (years)</th>
<th>No. of mutations</th>
<th>Possible mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>21q21.1</td>
<td>APP</td>
<td>Up to 5%</td>
<td>43–62</td>
<td>6</td>
<td>Altered APP processing</td>
</tr>
<tr>
<td>14q24</td>
<td>PS-1</td>
<td>Up to 80%</td>
<td>29–62</td>
<td>35+</td>
<td>Increase in A(\beta)(_{1–42})</td>
</tr>
<tr>
<td>1q31–42</td>
<td>PS-2</td>
<td>~20%</td>
<td>40–88</td>
<td>2</td>
<td>Increase in A(\beta)(_{1–42})</td>
</tr>
</tbody>
</table>

APP, amyloid precursor protein; PS-1, presenilin 1.
Genetic risk factors in Alzheimer’s disease

EOAD, early onset Alzheimer’s disease; LOAD, late onset Alzheimer’s disease; ACT, VLDL-R, very low density lipoprotein receptor.

APOE, apolipoprotein E; BChE, butyrylcholinesterase; LRP, low density lipoprotein receptor related protein; PS-1, presenilin 1; 1q31–42,34 and the mutated gene was identified in a cluster of apolipoprotein genes at chromosome 19q13.2. This region was first implicated in late onset Alzheimer’s disease by linkage studies.40–42 APOE is a 34 kDa glycoprotein encoded by a polymorphic gene resulting in three common alleles, named ε2, ε3, and ε4. The APOE ε4 allele is a well established risk factor for late onset Alzheimer’s disease, with a significantly higher frequency observed in Alzheimer’s disease cases than in controls.43–45 This association has been confirmed for both familial and sporadic late onset Alzheimer’s disease,45–47 and has also been reported in the early onset disease.46

The APOE ε4 risk has been shown to be dose dependant, the risk increasing with the number of ε4 alleles. One study has reported an odds ratio of 2.8 for individuals with one ε4 allele, increasing to 8.1 for individuals homozygous for the ε4 allele, compared with individuals with no ε4 alleles.48 It has also been shown that each ε4 allele lowers the age of onset by seven to nine years in late onset familial Alzheimer’s disease.49–51 A gender difference has been suggested for APOE associated risks50,51 but other studies have failed to confirm this difference.52–54 However, the former studies50,51 only considered data from families, so the proposed sex specific risk might only apply in familial Alzheimer’s disease.

The PS-1 gene knockout mice exhibit skeletal deformations, impaired neurogenesis, and neuronal cell death, leading to death shortly after birth.32 33

THE PS-2 GENE

Although mutations in the PS-1 gene account for most cases of familial Alzheimer’s disease, there are some affected families in which both APP and PS-1 mutations have been excluded. A third locus was identified at chromosome 1q31–42,34 and the mutated gene was identified subsequently as STM-2 or PS-2.35 Only two mutations have been identified in the PS-2 gene to date, leading to Alzheimer’s disease with an onset between 40 and 88 years of age, typically later than that seen in PS-1 linked cases.34

The PS-1 and PS-2 proteins were found to be highly homologous, sharing 67% identity. The PS-2 protein is proposed to have a similar function to the PS-1 protein, although they are unable to compensate for each other. It has been demonstrated that mutations in both the PS-1 and PS-2 gene cause over production of the amyloidogenic Aβ1–42 form in both transfected cells and transgenic mice.36–38 Presenilin mutations cause dominant gain of function, with mutant genes leading to an increase in Aβ1–42 production, even in the presence of wild-type alleles. It has also been reported that PS-1 mutations lead to altered protein metabolism, resulting in accumulation of N-terminal and C-terminal PS-1 protein fragments in brains of transgenic mice.39 However, it is not clear how this accumulation of fragments contributes to neurodegeneration.

Susceptibility genes

Only a small proportion (~10%) of Alzheimer’s disease cases are caused by mutations inherited in an autosomal dominant fashion. Most cases are late onset and apparently sporadic, probably as a result of a combination of environmental and non-dominant genetic factors. A number of genetic risk factors have been implicated in Alzheimer’s disease, which are not sufficient to cause the disease, but may greatly increase the risk above that of the general population; these are susceptibility genes (table 2).

Table 2 Susceptibility genes in which polymorphisms have been reported to influence Alzheimer’s disease risk

<table>
<thead>
<tr>
<th>Gene</th>
<th>Chromosomal location</th>
<th>Risk factor</th>
<th>Onset</th>
<th>Familial/sporadic</th>
<th>Other information</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOE</td>
<td>19q13.2</td>
<td>ε4 allele</td>
<td>LOAD and EOAD</td>
<td>Familial and sporadic</td>
<td>APOE ε4 independent</td>
</tr>
<tr>
<td>APOE</td>
<td>19q13.2</td>
<td>~491 A allele</td>
<td>LOAD</td>
<td>Sporadic</td>
<td>APOE ε4 modifies APOE ε4 effect</td>
</tr>
<tr>
<td>VLDL-R</td>
<td>9</td>
<td>TATA box T allele</td>
<td>LOAD</td>
<td>Sporadic</td>
<td>In APOE ε4 carriers only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trinucleotide five repeat</td>
<td>LOAD</td>
<td>Sporadic</td>
<td></td>
</tr>
<tr>
<td>LRP</td>
<td>12</td>
<td>Exon 3 CC genotype</td>
<td>LOAD</td>
<td>Familial and sporadic</td>
<td></td>
</tr>
<tr>
<td>LRP</td>
<td></td>
<td>TTTT repeat polymorphism</td>
<td>LOAD</td>
<td>Sporadic</td>
<td></td>
</tr>
<tr>
<td>A2M</td>
<td>12p</td>
<td>A2M-2 allele</td>
<td>LOAD</td>
<td>Familial</td>
<td>No interaction with APOE</td>
</tr>
<tr>
<td>PS-1</td>
<td>1q24</td>
<td>Intron 8, allele 1</td>
<td>LOAD (over 75 years)</td>
<td>Sporadic</td>
<td>In APOE ε4 carriers only</td>
</tr>
<tr>
<td>BChE</td>
<td>3q26.1–2</td>
<td>K allele</td>
<td>LOAD</td>
<td>Sporadic</td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td>1q32.1</td>
<td>Signal sequence A allele</td>
<td>LOAD</td>
<td>Familial and sporadic</td>
<td>In association with APOE ε4</td>
</tr>
<tr>
<td>ACT</td>
<td>1q32.1</td>
<td>Microsatellite A10 allele</td>
<td>LOAD</td>
<td>Sporadic</td>
<td>In association with APOE ε4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EOAD, early onset Alzheimer’s disease; LOAD, late onset Alzheimer’s disease; ACT, α2 antichymotrypsin; A2M, α2 macroglobulin; APOE, apolipoprotein E; BChE, butyrylcholinesterase; LRP, low density lipoprotein receptor related protein; PS-1, presenilin 1; VLDL-R, very low density lipoprotein receptor.

...
Recently, two polymorphisms within the APOE gene regulatory regions have been reported to play a role in Alzheimer’s disease. A G/T biallelic polymorphism in the APOE gene TATA box may modulate the influence of the APOE ε4 allele on the risk of disease, whereas an A/T polymorphism at position −491 was associated with Alzheimer’s disease risk independently of APOE ε4 status. Homozygosity for −491A was found to confer an increased risk of disease, possibly by altering the level of apoE protein production. The A allele was associated with higher constitutive levels of APOE promoter activity, as a result of differences in affinity for nuclear proteins between the two alleles. However, a subsequent study has failed to reproduce the association between the −491 regulatory region polymorphism and Alzheimer’s disease, although results suggest that the frequency of the −491 A/T polymorphism may vary considerably between different ethnic groups.

Although the APOE ε4 allele is a well-documented risk factor for Alzheimer’s disease, it is neither necessary nor sufficient for development of the disease. This implicates the involvement of other factors, either genetic or environmental, acting either independently or in association with the APOE ε4 allele. One study has reported that the presence of herpes simplex virus type 1 (HSV-1) DNA in the brain, together with possession of the APOE ε4 allele, is a strong risk factor for Alzheimer’s disease. In addition, various genetic factors have been reported to modify the risk associated with APOE ε4 (see below) but none, as yet, have been as convincing, or reproducible in different study groups, as the APOE effect.

VERY LOW DENSITY LIPOPROTEIN RECEPTOR (VLDL-R) GENE

Receptors for apoE containing lipoproteins such as the VLDL-R have been proposed to act as risk factors for Alzheimer’s disease, by influencing the metabolism of apoE in the brain. The VLDL-R gene is located on chromosome 9, and contains a polymorphic trinucleotide tandem repeat (CGG) in the 5’ untranslated region, with alleles ranging from four to nine repeats. It has been observed in a Japanese population that homzygosity for the five repeat allele, in association with the APOE ε4 allele, confers an increased risk of developing Alzheimer’s disease above that associated with possession of the APOE ε4 allele alone. However, subsequent studies in white populations have failed to find any association, although there are marked differences in allele frequencies between the Japanese and white populations. Thus, it is possible that the VLDL-R five repeat allele acts as an Alzheimer’s disease risk factor in Japanese populations only, although a further study in a Japanese population has also failed to find any association. It seems unlikely that the VLDL-R polymorphism plays a role in the late onset disease in white populations, but further studies are required to confirm its importance in Japanese populations.

In addition to VLDL-R, other lipoprotein receptors have also been investigated as candidate risk factors for late onset Alzheimer’s disease. Studies of the low density lipoprotein receptor (LDL-R) gene have shown no association with Alzheimer’s disease. The LDL-R related protein (LRP) gene, located on chromosome 12, has also been suggested as a candidate risk factor in the late onset disease. The LRP protein is the main apoE receptor in the brain, and is also responsible for endocytosis of secreted APP, suggesting a possible role in the pathogenesis of Alzheimer’s disease. Studies involving a TTTC repeat polymorphism in the 5’ end of the LRP gene have shown conflicting results. Studies using an alternative marker, a silent C/T polymorphism in exon 3 of the LRP gene, suggest that the CC genotype is over represented in patients with Alzheimer’s disease compared with controls, in both familial and sporadic late onset disease. Linkage data implicating a locus on chromosome 12 in late onset Alzheimer’s disease also suggest that the LRP locus might be important.

α₂ MACROGLOBULIN GENE (A2M)

α₂ Macroglobulin is a serum pan-protease inhibitor that has been implicated in Alzheimer’s disease because of its presence in senile plaques and its ability to bind Aβ, attenuating both fibril aggregation and neurotoxicity. Along with apoE and βAPP, α₂ macroglobulin is a major ligand for the LRP receptor, which has also been implicated in Alzheimer’s disease. A splice acceptor deletion in exon 18 of the α₂ macroglobulin gene, known as A2M-2, has been reported recently to be associated with an increased risk of Alzheimer’s disease. Using a sibling study approach, the frequency of the A2M-2 allele was found to be higher in probands than in unaffected individuals. The odds ratio associated with possession of at least one copy of the A2M-2 allele was 3.6, similar in magnitude to that associated with homzygosity for the APOE ε4 allele in this study.

These findings are interesting in the light of reports implicating a locus on chromosome 12 associated with Alzheimer’s disease. A2M maps to chromosome 12p, within 30 cM of the implicated chromosome 12 markers. Thus, further study of the A2M gene is justified, and as the odds ratio associated with the A2M-2 allele is similar in magnitude, or larger, than that associated with the APOE ε4 allele, this gene could prove to be an important risk factor in Alzheimer’s disease.

THE PS-1 GENE

Although the PS-1 gene is generally thought to be involved only in early onset familial Alzheimer’s disease, allele sharing between affected family members with late onset disease has been observed, suggesting a further role for PS-1 in late onset Alzheimer’s disease. It has been reported that a biallelic polymorphism within intron 8 of the PS-1 gene acts as a risk factor for late onset disease, with homzygosity for allele 1 being associated with an approximate doubling of risk when
compared with individuals with either one or no copies of allele 1. This association has been confirmed in two subsequent studies, but others have failed to find an association.

BUTYRYLCHOLINESTERASE (BChE) GENE
The BChE gene is located at chromosome 3q26.1–26.2. BChE is expressed in most human tissues but its function is unknown. BChE activity in the brain increases in an age dependant fashion after 60 years of age, and is raised in Alzheimer's disease. BChE has been detected histochemically in both senile plaques and neurofibrillary tangles in brains affected by Alzheimer's disease.

A variant of the BChE gene known as the BChE-K variant has a point mutation at nucleotide 1615 (GCA→ACA), resulting in a change of alanine 539 to threonine. This mutation reduces the catalytic activity of BChE by one third. Recently, it has been reported that the BChE-K variant is more common in patients with late onset Alzheimer's disease than in controls, other dementias, and patients with early onset Alzheimer's disease. The BChE-K variant was associated with a twofold increased risk of developing Alzheimer's disease, with the strongest effect observed in the over 75 age group. When APOE ε4 carrier status was also taken into account, possession of both APOE ε4 and BChE-K alleles was found to be associated with a 36 times greater risk when compared with individuals with neither allele. However, two subsequent studies have failed to confirm this finding.

ANTICHTYMOTRYPSIN (ACT) GENE
The presence of ACT in the cores of senile plaques, the high expression of ACT mRNA in brains affected by Alzheimer's disease, and the ability of ACT to promote aggregation of Aβ fibrils, suggest an important role for ACT in the pathogenesis of Alzheimer's disease. The ACT gene maps to chromosome 14q32.1, and contains a common biallelic polymorphism in the signal sequence, resulting in either an alanine (A) or a threonine (T) at position −17 of the ACT protein. It has been reported that the A allele of this signal sequence polymorphism is associated with an increased risk of Alzheimer's disease in APOE ε4 carriers only. It has also been reported that the ACT/AA genotype is associated with an increased risk of Parkinson's disease.

A complete genomic screen in familial late onset Alzheimer's disease has identified four regions of interest in the genome, on chromosomes 4, 6, 12, and 20, with a region near the centromere of chromosome 12 showing the strongest linkage. In this study, the effect of the chromosome 12 locus appears to be greatest in families in which the APOE ε4 allele has little influence on the risk of Alzheimer's disease. Although the LRP gene, a candidate Alzheimer's disease risk factor, is located on chromosome 12, the Pencak-Vance study shows no significant association with this gene in either familial or sporadic disease groups. One study has also reported a potential locus on the X chromosome.

THE VALUE OF ASSOCIATION STUDIES
It can be seen from the previous section on risk factors in Alzheimer's disease that the results obtained from association studies have provided conflicting data in a number of instances. Of the more than 70 000 genes believed to be expressed in the brain it would be remarkably fortuitous if the ones currently known (just over 2000) included all those associated with the disease state. It is far more likely that other genetic risk factors for Alzheimer's disease remain to be identified. However, the potential success of the association study approach is illustrated by the data obtained from APOE ε4 studies, which are robust and readily reproduced by many workers in the field.
A number of other factors could be contributing to the discrepancies noted in the literature. It is essential that the study groups used are closely matched for age, sex, and ethnic background because a number of alleles have been shown to vary with each of these parameters. There is also a problem with the accuracy of the diagnosis of Alzheimer's disease; although a clinical diagnosis of dementia is relatively straightforward, attributing a diagnosis of Alzheimer's disease is more problematic. A number of other pathologies (for example, Lewy body dementia, tangle only dementia, Pick's disease) present in a similar way and cannot be excluded easily on clinical grounds. Some would argue that all patients (both study and control groups) need to have their diagnoses confirmed histopathologically before inclusion in any study. It is quite possible that the genetics of these neuropathological diseases differ and inclusion of different phenotypes within a study group will obviously lead to a potential diminution of any association. Also, to increase the power of detection of any potential associations and resolve conflicting results between studies, study group sizes need to be increased substantially. Power calculations indicate that sample numbers should be in the thousands, rather than the hundreds, to detect potentially weak associations.

Another problem that needs to be addressed is how to accommodate the strong APOE e4 effect, which is apparent in all studies of late onset disease. Better mathematical models for complex multigenic disorders are required so that the APOE e4 effect can be removed and the effect of other loci established. This becomes even more important when the individual effect of a particular allele is small but in combination with other risk factors may become more potent.

The late onset nature of Alzheimer's disease causes obvious difficulties with study design, making pedigree analysis almost impossible. Sibling studies, which are usually very informative, would be of less value in Alzheimer's disease, because knowledge of parental genotypes is desirable to draw any conclusions regarding a particular locus. Although association studies are prone to a number of very real problems, it seems that they are the best approach that can be applied to Alzheimer's disease at this time, and can yield valuable information, as demonstrated by APOE studies.

Pathogenesis of Alzheimer's disease

CHOLINERGIC HYPOTHESIS

It has been observed that there is a cholinergic deficit in Alzheimer's disease brains, with reduced concentrations of choline acetyltransferase and acetylcholinesterase. The extent of this deficiency seems to correlate with the density of lesions, with greatest reductions in choline acetyltransferase and acetylcholinesterase activities in areas of the brain with high numbers of senile plaques and neurofibrillary tangles. The cholinergic deficit also appears to correlate with the extent of intellectual decline in patients with Alzheimer's disease.

However, Alzheimer's disease cannot be regarded as primarily a disorder of the cholinergic system, because patients have been reported with the classic neuropathological features of Alzheimer's disease, but without a reduction in choline acetyltransferase activity. In addition, reduction in choline acetyltransferase activity of a similar magnitude to that seen typically in Alzheimer's disease has been reported in other neurodegenerative conditions, without associated severe cognitive decline. The cholinergic deficit probably only explains part of the observed cognitive decline in patients with Alzheimer's disease. Other neurotransmitter changes also occur, including reduction of noradrenaline and serotonin in the cerebral cortex.

AMYLOID CASCADE HYPOTHESIS

This hypothesis states that the deposition of Aβ protein is the primary event in the pathogenesis of Alzheimer's disease, and that neurofibrillary tangles, neuronal death, and dementia occur subsequently as a result of this event. The cascade hypothesis assumes that Aβ and APP cleavage products containing Aβ are neurotoxic. Two successive events are required to cause Alzheimer's disease; first intact Aβ must be produced, and second this must facilitate or cause cell death and neurofibrillary tangle formation.

Aβ has been reported to have both neurotrophic and neurotoxic effects in vitro. The toxicity seems to depend on the fibrillar state of Aβ, and can be attenuated by both apoE and ACT. Aggregated Aβ may either kill neurons directly or increase the vulnerability of neurons to other insults such as excitotoxicity, hypoglycaemia, and peroxidative damage. It has also been suggested that Aβ disrupts calcium homeostasis, resulting in increased concentrations of intraneuronal calcium. It has been shown that tau phosphorylation is regulated by intracellular calcium concentrations, therefore suggesting a mechanism by which Aβ causes neurofibrillary tangle formation.

The amyloid cascade hypothesis is supported by the presence of familial Alzheimer's disease mutations in βAPP that apparently alter βAPP processing and favour amyloid plaque formation. The fact that individuals with Down's syndrome (trisomy 21) develop Alzheimer's disease-like pathology early in life also shows that overexpression of βAPP can cause Alzheimer's disease pathology, supporting a central role for Aβ deposition in Alzheimer's disease.

It has been suggested that the presenilin familial Alzheimer's disease mutations also cause disease by altering the processing of βAPP in a similar way to mutations in the βAPP gene itself. It has been demonstrated...
Genetic risk factors in Alzheimer’s disease 299

that both PS-1 and PS-2 familial Alzheimer’s disease mutations cause an increase in the concentration of Aβ1-42, therefore leading to increased amyloid deposition. Other genetic and environmental factors might act on the cascade at this point by stimulating aggregation of Aβ—for example, both apoE and ACT can enhance aggregation of Aβ in vitro. The potential effects of both genetic and environmental factors on the amyloid cascade are depicted in fig 3.

HYPERPHOSPHORYLATION OF TAU AND NEUROFIBRILLARY TANGLE FORMATION

The main argument against the amyloid cascade hypothesis is that neurofibrillary tangle formation has been shown to precede Aβ deposition,111 and densities of neurofibrillary tangles, rather than senile plaques, correlate closely with the extent of intellectual decline in patients with Alzheimer’s disease. The presence of neurofibrillary tangles in the absence of amyloid deposits (for example in Parkinson’s disease) demonstrates that amyloid is not an absolute prerequisite for neurofibrillary tangle formation.

Neurofibrillary tangles are composed mainly of a hyperphosphorylated form of the tau protein. Tau is a microtubule associated protein present in both the central and peripheral nervous systems. In the brain it is found predominantly in the axons of nerve cells, and its normal function is to promote the assembly and stability of microtubules by binding to tubulin. Native tau is a phosphoprotein, and the affinity of tau for microtubules appears to be regulated by the level of phosphorylation.112 In brains of patients with Alzheimer’s disease, tau becomes hyperphosphorylated and its ability to bind microtubules is greatly reduced,113 thus leading to destabilisation of the microtubule system. This could lead to diminished axoplasmic flow and, therefore, a reduced supply of substrates to the axons and dendrites, resulting in neuronal death.114 Hyperphosphorylated tau, being unable to bind microtubules, is therefore available to assemble into paired helical filaments.

APOE genotype has been reported to influence tau hyperphosphorylation, with the apoE ε4 protein, but not ε4, being capable of binding to tau and preventing hyperphosphorylation.115 This suggests a possible mechanism for the increased risk associated with possession of the APOE ε4 allele.

ACUTE PHASE RESPONSE

The presence of ACT, an acute phase protein, in amyloid plaques116 and its raised concentrations in the cerebrospinal fluid of patients with Alzheimer’s disease117 suggest that the acute phase response may be important in Alzheimer’s disease. Tumour necrosis factor (TNF), another acute phase protein, has also been reported to be raised in the circulation of patients with Alzheimer’s disease.118 Furthermore, other acute phase proteins have been detected immunohistochemically in association with senile plaques in the brains of patients with Alzheimer’s disease including complement proteins,119 interleukin 6 (IL-6), and α2 macroglobulin.120 Recent evidence suggests that α2 macroglobulin might be genetically associated with Alzheimer’s disease.121

ACT is upregulated in response to inflammation, stimulated by factors such as IL-1, IL-6, TNF, transforming growth factor β1 (TGF-β1),122 and oncostatin M.123 IL-1 is also able to induce expression of βAPP in cell culture,124 and is known to be increased in the brains of patients with Alzheimer’s disease.125 It can be hypothesised that the acute phase response is triggered in the Alzheimer’s disease brain in response to cell stress (such as injury, age related neuronal damage, and viral infection) resulting in increased concentrations of βAPP and ACT. This increased production of βAPP might influence metabolism, causing more to be processed to produce amyloidogenic Aβ42. The increased concentrations of ACT might stimulate aggregation of Aβ fibrils to form amyloid plaques, and this aggregated Aβ could then act as a further cause of cell stress, resulting in stimulation of the acute phase response in a positive feedback loop (fig 4).

OXIDATIVE STRESS

The identification of antioxidant enzymes, including antioxidant enzymes and heat shock proteins,126 in the neuropathological lesions of the disease suggests that oxidative stress is important in the pathogenesis of Alzheimer’s disease. Evidence also suggests that the neurotoxicity of Aβ might be mediated by oxygen
free radicals. However, there is controversy over whether oxidative stress is a causative factor in Alzheimer’s disease or a consequence of Aβ deposition. Studies in cell culture suggest that oxidative stress can shift APP processing in favor of increased Aβ production, supporting the “stress first” hypothesis. It has also been demonstrated that PS mutations are able to promote oxidative stress in neurons.

OXIDATIVE PHOSPHORYLATION DEFECTS
Oxidative phosphorylation (OXPHOS) generates mitochondrial ATP and is the main source of energy for a number of organs and tissues including brain, muscle, heart, kidney, and liver. The OXPHOS system is known to decline with age, possibly as a result of accumulation of damage to mitochondrial DNA caused by oxygen free radicals, a byproduct of OXPHOS. Evidence suggests that OXPHOS defects may play a role in the pathogenesis of Alzheimer’s disease. It has been shown that patients with Alzheimer’s disease have OXPHOS defects in a number of tissues. Mitochondrial DNA mutations have been reported to influence the risk of Alzheimer’s disease, and could lead to an increased rate of age related decline in the OXPHOS system.

APOPTOSIS
Apoptosis is a form of cell death characterized by condensation of nuclear chromatin, cytoplasmic condensation, DNA fragmentation, and maintenance of membrane integrity. Extensive loss of neurons is characteristic of certain areas of the Alzheimer’s disease brain, but the mechanism of this neuronal cell death is unknown. Apoptosis has been implicated in Alzheimer’s disease because of the ability of Aβ to induce apoptosis in cultured neurons. Familial Alzheimer’s disease mutant APP has also been demonstrated to induce apoptosis in vitro, and mutations in both PS-1 and PS-2 sensitise cells to pro-apoptotic stimuli. Increased concentrations of the apoptosis promoting protein Bax have been reported in response to Aβ in vitro, and in Alzheimer’s disease neurons in vivo.

However, the proportion of neurons in brains affected by Alzheimer’s disease that actually die by apoptosis rather than necrosis is not known. DNA fragmentation has been observed in Alzheimer’s disease brain cells; however, most of these neurons lack the characteristic morphological features of apoptosis. The assay of apoptosis specific protein, a marker for late stage apoptosis in Alzheimer’s disease brains suggests that most dystrophic neurons in affected brains exhibit necrosis rather than apoptosis.

FRAMESHIFT MUTATIONS
Dinucleotide deletions (ΔGA) within GAGAG motifs of the βAPP and ubiquitin B (Ubi-B) genes have been suggested to play a role in both early and late onset sporadic Alzheimer’s disease. Frameshift mutations appear to be introduced during protein synthesis that are not present in genomic DNA. Aberrant forms of βAPP and Ubi-B proteins were found to be more prominent in Alzheimer’s disease brains than in control brains.

The mechanism by which a wild-type gene can give rise to a mutant protein is unclear. It could be via a defect during transcription, or an editing mechanism in the RNA. Presumably, aberrant proteins arising from errors during protein synthesis would accumulate with age, possibly explaining the increased risk of Alzheimer’s disease with age. However, it is possible that the mutant proteins arise as a result of damage already present in the Alzheimer’s disease brain, rather than being a causative factor in the disease.

ADVANCED GLYCATION ENDPRODUCTS
Advanced glycation endproducts are a heterogeneous group of adducts arising via non-enzymatic reactions between reducing sugars and amine groups on proteins. This modification is irreversible, and advanced glycation endproducts accumulate during normal aging. Advanced glycation endproducts have been implicated in the pathogenesis of Alzheimer’s disease; diseased brains have been
reported to contain significantly higher concentrations of advanced glycation endproducts than age-matched control brains and advanced glycation endproduct modified Aβ has been demonstrated to accelerate amyloid aggregation in vitro. Advanced glycation endproducts colocalise with apoE, and it has been hypothesised that advanced glycation endproduct modified proteins bind to apoE and contribute to the formation of senile plaques. A greater binding affinity for advanced glycation endproducts has been demonstrated with apoE ε4 compared with apoE ε3, and this might have pathogenic consequences in vivo.

Summary

Although new discoveries are being made constantly in this field, the pathogenesis of Alzheimer’s disease remains poorly understood. The question remains, what causes Alzheimer’s disease and why do some individuals develop the disease while others live into old age with no signs of dementia? Molecular genetic research has shown that there is no simple answer to this question. Alzheimer’s disease is a complex polygenic disorder and many of the factors involved have yet to be identified. While the disease process remains largely a mystery, development of effective treatment is obviously difficult. This difficulty is compounded by problems with accurate diagnosis, resulting in heterogeneous groups of patients who may respond differently to treatment. The discovery of further genetic factors involved in the disease could lead not only to development of a better diagnostic profile, but to an increased understanding of the disease process.

We thank Dr K Robson and Professor J Lowe (Division of Pathology, School of Clinical Laboratory Sciences, Queen’s Medical Centre, Nottingham) for providing the photographs used in this article. We would also like to thank the Trent Health Care Scheme for financial support and Nottingham University for the studentship for L.T.

