Liver enriched transcription factors and differentiation of hepatocellular carcinoma

Y Hayashi, W Wang, T Ninomiya, H Nagano, K Ohta, H Itoh

Abstract
The development of a complex organism relies on the precise temporal and spacial expression of its genome in many different cell types. The unique phenotype of hepatocytes arises from the expression of genes in a liver specific fashion, which is controlled primarily at the level of mRNA synthesis. By analysing DNA sequences implicated in liver specific transcription, it has been possible to identify members of the nuclear proteins, such as the liver enriched transactivating factors, hepatic nuclear factor 1 (HNF-1), HNF-3, HNF-4, HNF-6, CCAAT/enhancer binding protein (C/EBP), and D binding protein (DBP), which are key elements in the liver specific transcriptional regulation of genes. Each of these factors is characterised by DNA binding domains that bind to unique DNA sequences (cis-acting factors) in the promoters and enhancer regions of genes expressed in terminally differentiated hepatocytes (such as, albumin, α-antitrypsin, transthyretin, α-fetoprotein). The determination of the tissue distribution of these factors and analysis of their hierarchical relations has led to the hypothesis that the cooperation of liver enriched transcription factors with the ubiquitous transactivating factors is necessary, and possibly even sufficient, for the maintenance of liver specific gene transcription. With the increase in information about transcriptional regulation, it should be possible to evaluate fully the clinicopathological usefulness of transcription factors in the diagnosis and treatment of hepatocellular carcinoma.

Keywords: liver enriched transcription factor; hepatic nuclear factors; CCAAT/enhancer binding protein; D binding protein

The tissue specific expression of genes is based on the presence of cis-acting sequences in their promoter and enhancer regions that interact with sequence specific nuclear transcription factors, which potentiate or depress transcriptional initiation. Therefore, the establishment and maintenance of a cell type specific, differentiated phenotype relies on the presence and activity of an array of tissue enriched DNA binding proteins with transactivating activity. In general, the different stages of hepatocyte differentiation have been characterised by the transcripts detected, and the expression of such transcripts is believed to be governed by the sets of transcription factors that are activated. Hepatic differentiation is presumed to be the result of the combined action of members of liver enriched transcription factors (LETFs), including CCAAT/enhancer binding protein (C/EBP), D binding protein (DBP), hepatic nuclear factor 3 (HNF-3), HNF-1, HNF-4, and HNF-6. These LETFs regulate each other and form a transcriptional hierarchy that is involved both in the determination and the maintenance of the hepatic phenotype. Hepatocarcinogenesis is characterised by the sequential appearance of preneoplastic and neoplastic populations of cells that show, in comparison with their normal counterparts, alterations in their proliferative behaviour and changes in the expression and activity of a large number of liver specific proteins. The phenotypical heterogeneity of hepatocellular carcinoma foci and nodules indicates the existence of distinct subpopulations of lesions. The promoter regions of several genes, including those encoding albumin, α-fetoprotein (α-FP), α-antitrypsin, transthyretin, fibrinogen, and certain members of the cytochrome P450 2C family that are highly expressed in the liver, have been shown to contain consensus sequences that bind different LETFs, and the relative abundance of these factors determines the level of gene expression. Some studies have investigated whether the changes in these LETFs might also occur in hepatocarcinogenesis.

Hepatocyte nuclear factor-1 (HNF-1) family
The HNF-1 family includes HNF-1α (also called LFIB1 or AFP) and HNF-1β (also called variant HNF-1). These proteins are characterised by a homeobox containing, DNA binding domain that is well conserved throughout evolution and a POU domain that confers sequence specificity. As a result of a similar dimerisation domain in their N-terminal regions, HNF-1α and HNF-1β proteins can dimerise on their own to form homodimers or they can form heterodimers with each other. The functions of different transactivation domains localised at their C-terminal regions show that HNF-1α has a higher potency of transactivation than HNF-1β (fig 1). HNF-1α and HNF-1β genes are located on different chromosomes—chromosomes 12 and 17, respectively. HNF-1β is expressed early on during embryonic development, in the endoderm of the foregut, whereas HNF-1α is activated later, upon condensation of the hepatic parenchyma, and its expression decreases in the adult liver (fig 2). Binding sites for HNF-1 have been shown in the promoters or enhancers of genes that are...
HNF-1 is expressed almost exclusively in the liver, such as albumin, α-fetoprotein, α-fibrinogen, β-fibrinogen, α1-antitrypsin, transthyretin, aldolase B, and the hepatitis B virus large surface protein. The study of the rat hepatoma cell, H4II, and its derivatives show that HNF-1 expression parallels the hepatic phenotype of the cells. HNF-1α is expressed only in fully differentiated cells and is absent in dedifferentiated variants or extinguished somatic hybrids. On the other hand, HNF-1β retains its expression in dedifferentiated variants and somatic cell hybrids. In hepatocarcinogenesis, the transcriptional alterations of HNF-1 can be demonstrated by the reverse transcription–polymerase chain reaction (RT–PCR) and the RNA protection assay; revealing that the HNF-1α:HNF-1β ratio is higher in well differentiated human hepatocellular carcinoma and lower in poorly differentiated human hepatocellular carcinoma, the latter being lower by 20–30%; in addition, HNF-1β mRNA remains unchanged in mouse liver tumours. The concentration of HNF-1α protein is also reduced in rat liver tumours and HNF-1 binding activity is reduced by lowered concentrations of HNF-1α protein in the transition from well differentiated to poorly differentiated human hepatocellular carcinoma. Both HNF-1α and HNF-1β are also found in other tissues including kidney, stomach, and intestine. The loss of HNF-1α has been shown during renal carcinogenesis, which is usually accompanied by dedifferentiation processes, including the loss of tissue specific gene expression. The promoter analysis of HNF-1α shows that in addition to HNF-1α autoregulation, HNF-4 is an essential activator of HNF-1α gene expression (fig 3).

Hepatocyte nuclear factor 4 (HNF-4)

HNF-4 is expressed in liver, kidney, and intestine in the adult, and activates a diverse set of liver genes such as transthyretin and α1-antitrypsin in early liver development, often interacting in synergy with adjacent binding factors. It belongs to the orphan steroid hormone nuclear receptor superfamily and is characterised by two highly conserved domains (fig 1). The DNA binding domain in the N-terminal half consists of two “zinc finger” motifs followed by an extensive C-terminal ligand binding domain, which performs a variety of functions, including transactivation, ligand binding, and protein dimerisation. During mouse development, HNF-4 is expressed in the primary endoderm at 4.5 days and then restricted to the visceral endoderm from 5.5 days (fig 2). In cell genetic analysis of hepatocyte differentiation, HNF-4 shows a capability to transactivate endogenous HNF-1α and liver genes such as α1-antitrypsin and to induce redifferentiation of a dedifferentiated hepatoma cell line, H5, by stable transfection of exogenous HNF-4. H5 cells express neither HNF-1α nor HNF-4; however,
Liver enriched transcription factors in hepatocellular carcinoma

The expression of HNF-4 decreases during hepatocarcinogenesis and a coordinate variation of HNF-4 and HNF-1α binding activity have been demonstrated. The upstream regulation of HNF-4 is still unclear, although HNF-4 transactivation is blocked by the intracellular accumulation of the HNF-1α protein (fig 3). Experiments have shown that the tyrosine or serine/threonine phosphorylations of HNF-4 negatively modulate its DNA binding and transactivation, and results suggest that HNF-4 might be regulated during cellular growth. The action of HNF-4, an orphan receptor, might be influenced by a potential ligand (fig 3).

C/EBP and DBP

C/EBP family members have a basic region and an adjacent leucine zipper (b/ZIP) structure, and they all bind to similar DNA sequences (fig 1). In this family, C/EBPα, C/EBPβ and C/EBPδ homodimerise or heterodimerise, and have different activation effects. They show strong similarity in their C-terminal sequences and divergence in their N-terminal transactivation domains. C/EBP proteins are expressed at a later stage in development (fig 2), and are found abundantly in liver and fat tissues, particularly in fully differentiated cells. Transduction of C/EBPα cDNA into pre-adipocytes results in the suppression of clonal cell growth and the promotion of adipogenic differentiation by inducing the expression of adipocyte specific genes such as 422 adipocyte P2 protein 422. Proof that the expression of C/EBPα proteins is required for pre-adipocyte differentiation is also provided by using the antisense RNA approach. Constitutive antisense C/EBPα RNA impairs the expression of C/EBPα itself and of adipocyte specific genes. C/EBPα is also expressed strongly in the mature hepatocyte and stimulates the transcription of liver specific genes such as albumin, transthyretin, and α1-antitrypsin. C/EBPα transcription correlates closely with the passage of hepatocytes through the cell cycle of the regenerating liver.

Figure 2 Hierarchy of expression of liver enriched transcription factors (LETFs) in liver development. Boxes indicate the sequential developmental stages.

the presence of C/EBPα and HNF-3 has been revealed, implying that these factors alone are not sufficient to maintain expression of marker genes of hepatic differentiation. After HNF-4 transduction, cells express the previously silent HNF-1α and show activation of some hepatic proteins, but not of the endogenous HNF-4. This study implies a transcriptional hierarchy from HNF-4, to HNF-1α, to target genes (fig 3). Furthermore, the effects of HNF-4 expression extend to the re-establishment of differentiated hepatic epithelial cell morphology, such as inducing: (1) re-expression of E-cadherin, which is a prerequisite for the formation of the junctional complex, including desmosomes and tight junctions; (2) simple epithelial polarity; (3) slow, “pile up” growth habit. It is reported that a factor, “seven up”, which is the drosophila homologue of HNF-4, is involved in terminal fat cell differentiation in drosophila. These data indicate that the HNF-4 gene might be a tumour suppressor gene that plays important roles in differentiation and antiproliferation.

DBF in mature liver

Expression of C/EBPα and C/EBPβ

Expression of liver specific genes in liver primordium

HNF-1α in Liver organ primordium

HNF-3α

HNF-3β in primitive streak

HNF-6

HNF-1α and HNF-4 in definitive endoderm

DBF in mature liver

Inhibitory factors of terminal differentiation?

Initial activation factors?

Figure 2 Hierarchy of expression of liver enriched transcription factors (LETFs) in liver development. Boxes indicate the sequential developmental stages.
Figure 3 Regulatory network of liver enriched transcription factors. The circular arrows represent autoregulation.

tissues in which C/EBPα is found. In human hepatocellular carcinoma tissues, the level of C/EBPα expression is very low or undetectable. Induction of C/EBPα expression in human hepatoma cells, Hep3B and HepG2, results in reversible arrest of proliferation, and delayed tumorigenesis is seen in immunodeficient mice implanted with two transfected cells. C/EBPβ (also called NF-IL6) and C/EBPδ are also mediators that regulate the acute phase response and they have low activity until activated by inflammatory stimuli. Activated C/EBPβ can transactivate multiple cytokine genes and promote the differentiation of macrophages and granulocytes.

Another member of the bZIP family, DBP, binds to the D element of the albumin promoter that is recognised by C/EBPβ. Both DBP and C/EBPβ, as liver enriched transcription factors, appear to be involved in the differentiation and regulation of acute phase and immune responses; however, DBP belongs to a distinct bZIP family, the PAR protein family, and is detected only after birth (fig 2). DBP and C/EBPβ do not heterodimerise, and C/EBPβ has a more relaxed binding specificity.

Hepatocyte nuclear factor 3 (HNF-3)
The HNF-3 family comprises three proteins, HNF-3α, HNF-3β, and HNF-3γ. These proteins share high homology in the winged helix/fork head DNA binding domain and in two short similar regions in their C-terminal and N-terminal regions, which exhibit transactivity (fig 1). They have been shown to be required for node and notochord axis formation and endodermal differentiation in the mouse embryo (fig 2). HNF-3β, HNF-3α, and HNF-3γ are activated sequentially during development. HNF-3β mRNA is expressed first in the primitive streak and the node before the expression of any liver genes. Slightly later than HNF-3β, HNF-3α (along with HNF-3β) is expressed in the definitive endoderm that lines the developing gut and subsequently forms components of the liver, lung, pancreas, and alimentary canal. HNF-3γ is expressed in the early liver and more posterior endoderm after the gut has formed. In combination with other liver enriched transcription factors that are expressed later, HNF-3 binds and transactivates numerous liver specific genes such as albumin, transthyretin, α1-antitrypsin, and transcription factor HNF-1α (fig 3). The concentration of HNF-3α increases when hepatocyte derived cell lines are cultured on an extracellular matrix gel substratum. Extracellular matrix gel substrata coordinately induce differentiated cell morphology and liver gene transcription in primary hepatocyte cultures. Thus, HNF-3α is important in transducing extracellular signals in the maintenance of hepatocyte differentiation. A winged helix gene in Caenorhabditis elegans, lin-31, appears to act via a receptor tyrosine kinase signal transduction cascade. Once HNF-3α and HNF-3β genes are activated, the gene products help to maintain their own synthesis by autoactivation (fig 3).

In primary cultured rat hepatocytes that exhibit the transition between growth and differentiation, the constant expression of HNF-3α and HNF-3β is seen; nevertheless, HNF-1α, HNF-4, C/EBPα, and C/EBPβ show a decrease during proliferation and an increase after the induction of differentiation. In chemically induced mouse liver tumours, the expression of HNF-3α and HNF-3β remains unchanged, although that of HNF-3γ increases. It is evident that HNF-3α and HNF-3β expression is necessary to maintain basic hepatocyte function. In addition, HNF-3α and HNF-3β also mediate the cell specific transcription of genes that are important for the function of intestine, stomach, and pancreatic acinar cells from the foreroot. The HNF-3 family is expressed at earlier stages of embryonic development and is competent for transactivation even in dedifferentiated hepatocyte derived cells, when other liver transcription factors are inactive or absent. Thus, members of the HNF-3 gene family might be the primary factors in the hierarchy of the expression of liver enriched transcription factors in hepatogenesis (fig 2).

Hepatocyte nuclear factor 6 (HNF-6)
HNF-6 is a recently identified member of the family of liver enriched transcription factors. It contains two different DNA binding domains: the novel homeodomain and a domain homologous to the drosophila cut domain (fig 1). HNF-6 is expressed in tissues that originate from the endoderm cells lining foregut, liver, pancreas, nervous system, brain, and spinal cord. In the study of HNF-6 potential target genes during development, it has been found that there are HNF-6 binding sites in the promoter regions of HNF-3β and HNF-4, as well as in the liver specific genes transthyretin and u-FP. An overexpression of HNF-6 can stimulate the expression of HNF-3β and HNF-4 (fig 3) in cotransfection experiments. The onset of HNF-6 gene transcription is detected in the liver at embryonic day 9, correlating with the onset of liver differentiation (fig 2). In situ hybridisation studies of staged specific embryos demonstrate that the HNF-6 expression pattern and level are consistent with those of its target gene HNF-3β in liver and pancreas. HNF-6 expression disappears transiently from the liver between embryonic days 12.5 and 15, but is
Liver enriched transcription factors in hepatocellular carcinoma

Liver enriched transcription factors in hepatocellular carcinoma. When some of the transcription factors are involved as a “nodule in nodule”, and have a strong metastatic potential. When some of the less well differentiated hepatocellular carcinoma is usually less than 2 cm in diameter, and rarely metastasises; predict patients’ prognosis: well differentiated hepatocellular carcinoma tissues are present again in the liver after embryonic day 15. This pattern is paralleled by HNF-3β. In addition, HNF-6 and HNF-3β transcripts are expressed abundantly and colocalise in the exocrine acinar cells of the pancreas on day 18 of gestation and in the adult liver, although their expression patterns diverge in pancreatic epithelium. These findings suggest that HNF-6 might regulate hepatocyte specific genes and play a role in epithelial differentiation of the ent gut endoderm by acting on HNF-3β.

Conclusion and perspectives

The progress made to date suggests strongly how the liver enriched transcription factors function in the regulation of transcription and a regulatory network among transcription factors is either not activated or present in sufficient amounts, the gene that requires that set of regulatory molecules are not present in sufficient amounts, and cell proliferation and differentiation.

4 Withdrawn.

10 Costa RH, Lai E, Grayson DR, et al. The cell-specific enhancer of the mouse transferrin (prealbumin) gene binds a common factor to one site and a liver-specific factor to two other sites. Mol Cell Biol 1988;8:81–90.

et al.

50 Landschulz W, Johnson P, McKnight S. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 1988;240:1759–64.

38 Landschulz W, Johnson P, McKnight S. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 1988;240:1759–64.

36 Landschulz WH, Johnson P, McKnight S. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 1988;240:1759–64.

34 Landschulz W, Johnson P, McKnight S. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 1988;240:1759–64.

33 Landschulz WH, Johnson P, McKnight S. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 1988;240:1759–64.

