HHV-8 (KSHV) is not associated with bacillary angiomatosis

S J Nayler, U Allard, L Taylor, K Cooper

Abstract

Aims—Bacillary angiomatosis is a rare pseudoneoplastic angioproliferative lesion occurring in patients with AIDS. This condition has been associated with Bartonella henselae and Bartonella quintana infections. Human herpesvirus 8 (HHV-8) is thought to be the causative agent of Kaposi's sarcoma, a vasoproliferative neoplasm, also commonly found in patients with AIDS. The presence of HHV-8 in a cohort of patients with bacillary angiomatosis was investigated.

Methods—Eight cutaneous cases of biopsy confirmed bacillary angiomatosis were assessed for HHV-8 using standard solution phase polymerase chain reaction (PCR).

Results—No case of bacillary angiomatosis harboured HHV-8 DNA.

Conclusions—HHV-8 was not demonstrated in the lesions of bacillary angiomatosis and therefore does not appear to play a role in the pathogenesis of this pseudoneoplastic angioproliferative disorder. This finding might be useful in the distinction of bacillary angiomatosis from Kaposi's sarcoma, because lesions from patients with Kaposi's sarcoma almost always contain HHV-8 DNA.

Keywords: bacillary angiomatosis; human herpesvirus 8; Kaposi's sarcoma; polymerase chain reaction

Bacillary angiomatosis is a pseudoneoplastic disease characterised by angioproliferative lesions involving skin and deep viscera. Typically all cases have occurred in the setting of advanced AIDS. This condition was first described in the USA in 1983 and in South Africa in 1993. The causative organisms implicated are Bartonella henselae and Bartonella quintana (formerly Rochalimaea henselae and Rochalimaea quintana, respectively).

The newly described human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma associated herpes virus (KSHV), has been shown to be associated with all forms of Kaposi's sarcoma, including AIDS associated Kaposi's sarcoma, classic, African endemic, and the transplant associated forms. HHV-8 has also been implicated in the pathogenesis of a wide number of human neoplasms.

Bacillary angiomatosis can be clinically mistaken for Kaposi's sarcoma and although most cases demonstrate characteristic histological features (fig 1A–C), with lobular proliferations of capillaries, lined by plump endothelial cells associated with aggregates of neutrophils scattered throughout the lesion, occasional cases have in our experience shown areas resembling Kaposi's sarcoma (fig 1D).

Because both conditions are vasoproliferative lesions associated with infective organisms, we undertook this study to establish whether there is an association between human herpesvirus 8 and bacillary angiomatosis.

Methods

Eight cases of previously diagnosed bacillary angiomatosis, from seven patients (two separate sites from one patient), were retrieved from the archives of the department of anatomical pathology, South African Institute for Medical Research and University of the Witwatersrand. Two cases had been described previously. Two of the patients were white homosexual men, the remaining five patients were heterosexual black Africans, who had acquired the human immunodeficiency virus sexually. No patient had biopsy confirmed Kaposi's sarcoma concurrently. Table 1 summarises the clinical details.

Sections (2–4 µm thick) were cut from paraffin wax embedded tissue, floated out, and picked up on to glass slides. These were then air dried, dewaxed, and hydrated through sequential baths of xylene and alcohol, respectively, before a final rinse in distilled water. The sections were then allowed to dry. Strict anticontamination procedures were followed.

DNA was extracted from the tissue using the QIAmp kit (Qiagen, Dorking, Surrey, UK). The tissue was digested overnight in proteinase K at 55°C, precipitated with ethanol, and bound in a spin column, before final elution in water.

Two rounds of nested polymerase chain reaction (PCR) were performed on a Perkin Elmer Geneamp PCR system (Perkin Elmer, Norwalk, Connecticut, USA). Initially, 2 µl of DNA were added to a reaction mixture containing 0.2 mM of each of the primers KS4 (5'-AGCACCTCGCAGGGCAG TACG-3') and KS5 (5'-GACTCTTCGCTG ATGAACTGG-3'). Each 50 µl contained 10 mM of Tris/HCl, 50 mM of KCl, 2 mM of MgCl2, 1.5 U of Taq polymerase, and 0.1 mM dNTP (Boehringer Mannheim, Randburg, South Africa). A second reaction using internal primers KS1 (5'-AGCCGAAAGATTCCA CGAT-3') and KS2 (5'-TCCGTTT GTCTACGCTCAG-3') was performed on 4 µl of the amplimer obtained from the first reaction. The reaction mixture was identical to that used above.

Thermocycling conditions were as follows: first round: 30 cycles of 45 seconds at 94°C, 30 seconds at 60°C, and 45 seconds at 72°C. The
second round was similar, but with an annealing temperature of 55°C. Positive controls were performed, using DNA extracted from a Kaposi's sarcoma lesion, and appropriate negative controls comprised tissue not containing HHV-8 from immunocompetent patients, and a blank control with water substituted for the DNA. The DNA was electrophoresed on a 3% agarose gel and visualised with ethidium bromide. The size of the DNA fragment (233 bp) was established by comparison with a standard molecular weight marker (Marker V; Boehringer Mannheim). The sensitivity of this method has been shown to be one HHV-8 copy/10 000 uninfected cells.17

Amplification of the β-globin gene, under the same conditions described above, was performed to establish the integrity of the DNA preparations, as described previously.18 A 10 µl aliquot of extracted DNA was amplified with primers PCO4 (5'-CAACTTCATCCACGTTCACC-3') and GH20 (5'-GAAGAGCCAAGGACAGGTAC-3'). Each reaction contained 10 mM Tris/HCl, 50 mM KCl, 4 mM MgCl₂, 200 µM each dNTP, 2.5 U Taq polymerase, and 0.5 µM of each β-globin primer. Amplification conditions were as follows: “hot start” of 94°C for four minutes, followed by 40 cycles of 95°C for one minute, 55°C for one minute, then 72°C for one minute. The final extension was for five minutes at 72°C. The amplimers were visualised on a 3% agarose gel stained with ethidium bromide. The anticipated size of the DNA fragment was 268 bp.

Three replicate assays were performed for each sample.

Results

HHV-8 DNA sequences were not detected in the eight cases of bacillary angiomatosis. The Kaposi's sarcoma control contained HHV-8, whereas the negative controls were devoid of these DNA sequences. Figure 2 shows these results. Each of the specimens successfully amplified DNA sequences for the β-globin

Table 1 Clinical data of seven HIV positive patients with bacillary angiomatosis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sex</th>
<th>Age</th>
<th>Site</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>36</td>
<td>Skin</td>
<td>Angiomatous papules face, trunk, and palate</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>45</td>
<td>Skin</td>
<td>Angiomatous nodules on thigh and penis: clinically Kaposi's sarcoma</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>42</td>
<td>Skin (thigh)</td>
<td>Ulcerating nodular lesion: ?Kaposi's sarcoma</td>
</tr>
<tr>
<td>4*</td>
<td>M</td>
<td>28</td>
<td>Skin (thigh)</td>
<td>Pustular, angiomatic lesions on face, trunk, and legs</td>
</tr>
<tr>
<td>5*</td>
<td>M</td>
<td>28</td>
<td>Skin (abdomen)</td>
<td>Clinically Kaposi's sarcoma</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>40</td>
<td>Skin</td>
<td>Tender, ulcerated nodule on thigh, possible Kaposi's sarcoma or carbuncle</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>28</td>
<td>Skin (thigh)</td>
<td>Angiomatous lesion, possible Kaposi's sarcoma</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>27</td>
<td>Skin (left submandibular area)</td>
<td>Angiomatous lesion, possible Kaposi's sarcoma</td>
</tr>
</tbody>
</table>

*Same patient.

F, female; M, male.
HHV-8 is not associated with bacillary angiomatosis

Discuss the potential implications of HHV-8 DNA sequences in other vascular lesions.

Other vascular tumours can mimic Kaposi’s sarcoma histologically, particularly angiosarcomas, spindle cell haemangioendothelioma, and kaposiform haemangioendothelioma. The absence of HHV-8 DNA sequences in these lesions, as well as their absence in a range of other vascular neoplasms, has also been demonstrated.27 Thus, the demonstration of HHV-8 in a vascular lesion with the histomorphology of Kaposi’s sarcoma should be regarded as being specific for Kaposi’s sarcoma.

Our data indicate that HHV-8 is not associated with bacillary angiomatosis. For practical purposes this might have useful implications for histopathologists, in distinguishing between these two entities. Bacillary angiomatosis, in most instances, has characteristic histopathological features, which allow it to be distinguished from Kaposi’s sarcoma. In our experience, occasional cases of bacillary angiomatosis can show areas within the lesion that are virtually indistinguishable from Kaposi’s sarcoma.

In cases in which histological differentiation between these two vasoproliferative lesions is not clear, the demonstration of HHV-8 could definitively establish the diagnosis of Kaposi’s sarcoma. In contradistinction, the demonstration of HHV-8 would be against a diagnosis of bacillary angiomatosis. This distinction has important clinical implications, because bacillary angiomatosis responds well to appropriate antibiotic treatment, the institution of which is likely to be lifesaving.

In summary, we have shown that bacillary angiomatosis is not associated with HHV-8. This finding supports the growing body of evidence that HHV-8 is a specific marker for Kaposi’s sarcoma, and is not found in other vasoproliferative lesions and tumours.

References: