Expression of the matrix metalloproteinase 9 in Hodgkin’s disease is independent of EBV status


Abstract

Background—In vitro the Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP-1) has been shown to upregulate expression of matrix metalloproteinase 9 (MMP-9), a member of a family of zinc dependent endopeptidases that is believed to facilitate tumor invasion and metastasis by degradation of the extracellular matrix.

Aim—To test whether the expression of MMP-9 in Hodgkin’s disease correlates with EBV status and survival and to investigate whether LMP-1 expression affects MMP-9 concentrations in the Hodgkin’s disease cell line, L428.

Methods—MMP-9 expression was measured by means of immunohistochemistry in a series of Hodgkin’s disease tumours and this expression was correlated with EBV status and survival. The influence of LMP-1 on MMP-9 expression was also investigated in the Hodgkin’s disease cell line, L428.

Results—MMP-9 expression was demonstrated in the malignant Hodgkin and Reed-Sternberg cells of all (n = 86) formalin fixed, paraffin wax embedded Hodgkin’s disease tumours examined. Although the intensity of MMP-9 immunostaining varied between cases, there was no correlation between MMP-9 expression and EBV status or survival. MMP-9 expression was also detected in a variety of non-malignant cells, including fibroblasts. MMP-9 was detected by zymography in the L428 and KMH2 Hodgkin’s disease cell lines, whereas low or undetectable amounts of MMP-9 were found in the L591 Hodgkin’s disease cell line. Induction of LMP-1 expression in the Hodgkin’s disease cell line L428 did not result in a detectable increase in the values of MMP-9 as measured by zymography.

Conclusions—These results demonstrate that MMP-9 is consistently expressed by the Hodgkin and Reed-Sternberg cells of Hodgkin’s disease tumours and by the Hodgkin’s disease cell lines, L428 and KMH2. However, this expression does not appear to be related either to LMP-1 values or to survival.

Keywords: matrix metalloproteinase 9; Hodgkin’s disease; Epstein-Barr virus; latent membrane protein 1
sample, adhered to VECTABOND treated slides (Vector Laboratories, Peterborough, UK), and incubated overnight at 37°C. After dewaxing and clearing, endogenous peroxidase activity was blocked with 0.3% hydrogen peroxide in methanol, and the sections were transferred to phosphate buffered saline (PBS) at pH 7.6. Sections were preincubated in normal rabbit serum (Dako, Cambridgeshire, UK) for 10 minutes and then incubated at room temperature with a prediluted (1/50) goat polyclonal antibody directed against MMP-9 (C-20; Autogen Bioclear, Calne, Wiltshire, UK), for one hour. Biotinylated rabbit antibody for 30 minutes, followed by streptavidin and biotinylated horseradish peroxidase complex for a further 30 minutes (both Dako). To confirm the specificity of the immunodetection, selected cases were also immunostained with a mouse monoclonal antibody to MMP-9 (clone VIIC2, Lab Vision Corp, Freemont, California, USA) diluted 1/100. Visualisation was carried out using the Sigma FAST™ DAB (3, 3′-diaminobenzidine) peroxidase substrate system (Sigma-Aldrich, Poole, Dorset, UK). Sections were counterstained in haematoxylin and mounted in DPX.

Figure 1 Immunohistochemistry for matrix metalloproteinase 9 (MMP-9). Paraffin wax embedded section of Hodgkin’s disease showing strong positive staining in the malignant Hodgkin and Reed-Sternberg cells.

STATISTICAL ANALYSIS
Kaplan-Meier plots were used to compare the potential differences in survival between the three Hodgkin’s disease groups with differing intensities of MMP-9 expression. The Mann-Whitney test was also used to compare the distribution of MMP-9 categories within EBV negative and EBV positive specimens.

HODGKIN’S DISEASE CELL LINE
Hodgkin’s disease cell lines, including KMH2, L591, parental L428, and L428 cells transfected with a cadmium inducible LMP-1 construct (F1L428) were cultured in RPMI-1640 (Gibco-BRL, Paisley, Scotland; UK) supplemented with 5% vol/vol fetal calf serum (FCS; Gibco-BRL), 2 mM L-glutamine, streptomycin (5 mg/100 ml), penicillin (5000 U/100 ml) and amphotericin (250 µg/100 ml) (all Sigma-Aldrich).1-12 LMP-1 expression was induced in F1L428 cells by the addition of cadmium chloride (final concentration of 6 µM) to the medium (induction was carried out for six hours). L428 cells that had been transfected with vector DNA only (H2L428) were used as controls.

WESTERN BLOTTING
For western blot analysis, 10 ml aliquots (approximately 2 × 10⁶ cells) of each of the L428 cell lines (H2, F1, and F1 induced) were pelleted by centrifugation at 200 × g for five minutes. The resulting cell pellets were resuspended in 1000 µl of distilled water and sonicated at 4°C for 2.5 minutes (5 × 30 seconds). The protein concentration was determined using the Bio-Rad protein assay (Bio-Rad, Hemel Hempstead, Hertfordshire, UK). Cells were centrifuged and the pellets were resuspended in 200 µl of sodium dodecyl sulphate (SDS) buffer and equal amounts of active and inactive forms of MMP-9; lane 2, L428 cells transfected with vector plus LMP-1 insert (F1L428 cells). LMP-1 expression was induced in the F1L428 cells by incubation with 6 µM cadmium chloride for six hours and shows a protein band corresponding to LMP-1. As expected, treatment of parental L428 cells and H2 cells with cadmium produced no such band. (C) Zymography analysis of matrix metalloproteinase 9 (MMP-9) expression. Conditioned media from: lane 1, control cells showing bands for active and inactive forms of MMP-9; lane 2, L428 cells with LMP-1 insert (F1L428) uninduced; lane 3, F1L428 cells after induction of LMP-1 expression; lane 4, H2L428 cells (vector only); lane 5, L591 cells; lane 6, KMH2 cells.

Figure 2 (A) Western blot analysis demonstrates that latent membrane protein 1 (LMP-1) expression can be induced in L428 cells transfected with the LMP-1 gene (F1L428 cells) by incubation with 6 µM cadmium chloride for time periods ranging from zero hours (lane 1) to 24 hours (lane 6). Protein was detected using the CS1-4 monoclonal antibody reagent. (B) Western blot analysis of the L428 Hodgkin’s disease cell line using the monoclonal reagent CS1-4. Lane 1 represents protein from the parental L428 Hodgkin’s disease cell line, lane 2 is from L428 cells transfected with vector only, and lane 3 the vector plus LMP-1 insert (F1L428 cells). LMP-1 expression was induced in the F1L428 cells by incubation with 6 µM cadmium chloride for six hours and shows a protein band corresponding to LMP-1. As expected, treatment of parental L428 cells and H2 cells with cadmium produced no such band. (C) Zymography analysis of matrix metalloproteinase 9 (MMP-9) expression. Conditioned media from: lane 1, control cells showing bands for active and inactive forms of MMP-9; lane 2, L428 cells with LMP-1 insert (F1L428) uninduced; lane 3, F1L428 cells after induction of LMP-1 expression; lane 4, H2L428 cells (vector only); lane 5, L591 cells; lane 6, KMH2 cells.
Hodgkin's disease with di

Figure 3 Kaplan-Meier plots showing the survival curves for the three groups of MMP-9 expression (+, ++, and +++). There were no significant differences between the groups.

Results

IMMUNOHISTOCHEMISTRY

MMP-9 expression was detected in the malignant Hodgkin and Reed-Sternberg cells of all 86 paraffin wax embedded Hodgkin's disease specimens (fig 1). In most cases, strong cytoplasmic staining of Hodgkin and Reed-Sternberg cells was seen. In all cases, several non-malignant cell types were stained, including fibroblasts and macrophages. The specificity of the goat polyclonal antibody for MMP-9 was confirmed by the staining of selected cases with a monoclonal antibody to MMP-9 because both antibodies produced identical staining patterns.

ZYMOGRAPHY

Gelatin zymography of the cell lysates and conditioned media from the parental L428 Hodgkin's disease cell line showed the presence of a band at the molecular weight corresponding to inactive MMP-9. LMP-1 expression was successfully induced in the F1L428 line as demonstrated by western blotting using the CS1-4 reagent (fig 2A and B). However, when conditioned media or cell pellets from this cell line were subjected to zymography, MMP-9 values were identical to those seen in the parental L428 cells (fig 2C). MMP-9 was also detected by zymography in the KMH2 Hodgkin's disease cell line, whereas low or undetectable amounts of MMP-9 were found in the L591 Hodgkin's disease cell line. None of the samples contained detectable amounts of activated MMP-9.

STATISTICAL ANALYSIS

The intensity of MMP-9 immunostaining of individual Hodgkin's disease cases was variable and there was no correlation between the degree of MMP-9 expression and EBV status. In addition, MMP-9 expression was independent of histological subtype. For the Mann-Whitney test, in which the distribution of MMP-9 categories is compared between EBV negative and EBV positive status, the Z statistic was −0.16, and the p value was 0.88.

The Kaplan-Meier plots (fig 3) showed that there were no significant differences between the degree of MMP-9 expression and patient outcome. However, there were too few patients in the MMP-9 positive category for a meaningful analysis of this group.

Discussion

Although several MMPs have been implicated in the spread of tumours, MMP-9 may be particu-
larly relevant to the progression of lymphomas. MMP-9 has been shown to be important for the in vitro degradation of extracellular matrix components by non-Hodgkin’s lymphoma cells. In vivo, MMP-9 is also overexpressed in a subset of high grade non-Hodgkin’s lymphomas, and this correlates with a poor clinical outcome.1-13

Previous studies have shown that MMP-9 expression is increased in EBV latency type III B cell lymphoma cell lines compared with type I cells, where there is a restricted expression of virus genes. Furthermore, expression of MMP-9 in the C33A cell line was increased by transfection of the EBV encoded LMP-1.1 LMP-1 is transforming in Rat-1 cells and induces many of the phenotypic changes seen in EBV infected B cells, including expression of the B cell activation markers, CD23 and CD40; upregulation of cell adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1), lymphocyte function associated antigen 1 (LFA-1), and LFA-3; and cytokine production.14-16 LMP-1 also protects B cells from cell death by the upregulation of several anti-apoptosis genes including Bcl-2, Mcl-1, and A20.2,17-22 Many of the phenotypic and growth transforming effects of LMP-1 are the result of the activation of a variety of signalling pathways, many of which converge on the NF-kB (nuclear factor kxB) and AP-1 transcription factors.23-24

Given that LMP-1 is highly expressed in a proportion of Hodgkin’s disease tumours,25-26 and also the potential importance of MMP-9 in the progression of lymphomas, we examined the expression of MMP-9 in a series of Hodgkin’s disease tumours.

The results of our study show that MMP-9 is consistently expressed by the malignant Hodgkin and Reed-Sternberg cells of Hodgkin’s disease. Furthermore, studies on the Hodgkin’s disease cell lines showed that L428 and KMH2 cells secreted MMP-9. Although the intensity of MMP-9 immunostaining within individual Hodgkin’s disease tumours varied, there was no correlation between the degree of MMP-9 expression and EBV status. This was confirmed by the induction of LMP-1 expression in L428 cells, which resulted in no detectable increase in MMP-9 values.

A recent study has shown that upregulation of MMP-9 by LMP-1 is dependent upon the two activating regions of LMP-1 (known as C terminus activating regions, CTAR-1 and CTAR-2) and that the NF-kB and AP-1 sites in the MMP-9 promoter are also required.27 Constitutive activation of NF-kB (p50/p65) has been described as a common feature of Hodgkin and Reed-Sternberg cells.28-29 Thus, it may be that NF-kB mediated upregulation of MMP-9 is likely in Hodgkin and Reed-Sternberg cells even in the absence of LMP-1.

Although the exact role of MMP-9 expression in the spread of Hodgkin’s disease tumours has yet to be established, its consistent expression suggests the potential for therapeutic interventions using MMP-9 inhibitors.


Visitors to the world wide web can now access the Journal of Clinical Pathology either through the BMJ Publishing Group’s home page (http://www.bmjfg.com) or directly by using its individual URL (http://www.molpath.com). There they will find the following:

- Current contents list for the journal
- Contents lists of previous issues
- Members of the editorial board
- Information for subscribers
- Instructions for authors
- Details of reprint services.

A hotlink gives access to:
- BMJ Publishing Group home page
- British Medical Association web site
- Online books catalogue
- BMJ Publishing Group books.

The web site is at a preliminary stage and there are plans to develop it into a more sophisticated site. Suggestions from visitors about features they would like to see are welcomed. They can be left via the opening page of the BMJ Publishing Group site or, alternatively, via the journal page, through “about this site”.

MMP-9 expression in Hodgkin’s disease