The CCN family of genes: a brief history

An emerging family of regulatory proteins referred to under the CCN acronym (for Connective tissue growth factor (CTGF), Cystein rich protein (Cyr61), and Nephroblastoma overexpressed gene (nov)) has been uncovered over the past few years.

The CCN family comprises both positive and negative regulators sharing a common multimodular organisation. New members of the CCN family have been described recently. More are to come.

The chicken CEF10 and homologue murine cyr61 genes were first identified as immediate early genes induced by the pp60c-src oncogene and serum growth factors, respectively. The CYR61 protein was shown to promote cell adhesion, migration, and proliferation, probably through potentiating platelet derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) activities.

Human ctgf was also identified as an immediate early gene encoding a connective tissue growth factor (CTGF) showing mitogenic activity for human umbilical vein endothelial cells (HUVECs) and fibroblasts in culture.

The new gene was initially characterised as an integration site for the myeloblastosis associated virus (MAV), which induces kidney tumours that represent a unique model of the Wilms’ tumour. The expression of the nov gene was found to be altered either positively or negatively in human and animal tumours.

The murine Elm1 gene (expressed in low metastatic cells) was reported to be expressed in low metastatic but not in high metastatic K-1735 mouse melanoma cells. It was found to exhibit cell growth inhibitory properties and to suppress the tumorigenic potential of mouse melanoma cells.

Murine rCop-1 expression was completely abolished after transformation, and retroviral driven expression of rCop-1 had a dramatic cytotoxic effect on transformed cells, but not on untransformed counterparts.

More recently, three genes involved in the Wnt1 signalling pathway (WISP-1, WISP-2, WISP-3) were shown to be highly related to the CCN family of genes. The WISP-1 and WISP-2 genes are homologous to Elm1, and rCop-1, respectively.

A novel regulator of osteoblast functions (CTGF-L) was also found to be homologous to CTGF. The presence of an insulin-like growth factor binding protein (IGFBP)-like motif at the C-terminus of NOV and the extensive homology of nov, cytf, cyr61, Elm1, rCop-1, and IGFBP3 genes at the 5’ end raised the possibility that the proteins might be acting in the IGF-signalling pathway. The only evidence is that CTGF and NOV bind IGF in vitro with a 100–1000 times lower affinity than authentic IGFBPs. Because IGF binding to NOV was not observed under standard ligand blotting assay conditions, the biological activity of these motifs remains to be established, their conservation in all members of the CCN family argues for their biochemical or structural importance.

The CTGF-L/WISP-1 protein might be important.

The CCN family of genes was first identified as immediate early genes induced by the src proto-oncogene and expression in Wilms tumor.

I am grateful to L. Lau for critical reading of the text.

B PERBAL

Laboratoire d’Oncologie Virale et Moleculaire, UFR de Biochimie, Université Paris 7-D. Diderot, 2 Place Jussieu, 75005 Paris, France

Bernard.Perbal@wanadoo.fr


