Effect of *Helicobacter pylori* on apoptosis and apoptosis related genes in gastric cancer cells

Y Yang, C S Deng, J Z Peng, B C-Y Wong, S K Lam, H H-X Xia

Background/Aims: *Helicobacter pylori* induces the apoptosis of gastric epithelial cells in vivo and in vitro. However, the molecular mechanism has not been clarified. The aim of this study was to investigate the effect of *H pylori* on the apoptosis of gastric epithelial cells and the expression of apoptosis related genes in vitro.

Methods: Human gastric adenocarcinoma SGC-7901 cells were co-cultured with a cytotoxic *H pylori* strain, NCTC 11637, at various densities ranging from 3.2×10^3 to 1.0×10^6 colony forming units (CFU)/ml for 48 hours. Apoptosis in gastric cells was determined by transmission electron microscopy, Hoechst 33258 fluorochrome staining, and flow cytometry. The expression of apoptosis related proteins, Bcl-2, Bax, and c-Myc, was measured by an immunohistochemical method, and c-Myc mRNA expression was determined by the reverse transcription-polymerase chain reaction.

Results: *Helicobacter pylori* induces morphological changes typical of apoptosis. Both fluorochrome staining and flow cytometry showed that the apoptotic index began to increase when *H pylori* were at a density of $> 1.6 \times 10^6$ CFU/ml, and in a density dependent manner ($p < 0.01$; two way ANOVA). The expression of the Bax and c-Myc proteins and of c-Myc mRNA was increased, whereas Bcl-2 expression was decreased after co-culture for 48 hours.

Conclusions: *Helicobacter pylori* induced apoptosis in gastric epithelial cells is mediated by altered expression of the products of the Bcl-2, Bax, and c-Myc genes.

Helicobacter pylori infection in the human stomach is common, particularly in developing countries, where most adults are infected. Epidemiological data, clinical studies, and experimental studies have shown that *H pylori* is a major aetiological agent for gastritis, peptic ulcer disease, and gastric malignancy. However, the pathogenic mechanisms by which the organism causes the diseases have not been fully defined.

Gastric mucosal integrity is maintained by a balance between the rate of cell loss and the rate of epithelial cell regeneration. Cell proliferation and apoptosis (programmed cell death) are essential events involved in the cellular turnover of epithelial tissue. Fig 1 Apoptosis is a physiological suicide mechanism that occurs during normal tissue turnover and is involved in tissue homeostasis. In the gastric epithelium, apoptosis plays an essential role in maintaining tissue integrity. Normally, the rate of cell loss by apoptosis is matched by the rate of new cell production by proliferation. However, this balance may be affected by *H pylori* infection, leading to various gastroduodenal diseases. It has been shown that *H pylori* infection induces apoptosis in gastric epithelial cells, and subsequently results in an increase in cell proliferation as a host response to apoptosis. However, apoptosis induced by *H pylori* infection is not accompanied by a matched increase in cell proliferation and apoptosis will result in the loss of mucosal integrity, leading to gastric erosion and ulceration, or the loss of gastric glands, leading to gastric atrophy. Alternatively, if the response to apoptosis is greatly increased cell proliferation, this will result in increased proliferation of the gastric mucosa, which is believed to increase the risk of the development of gastric neoplasia.

"In the gastric epithelium, apoptosis plays an essential role in maintaining tissue integrity"
in RPMI 1640 (Gibco Company, New York, USA) medium, which was supplemented with 2% fetal calf serum (FCS). The bacterial densities were adjusted by the optical density (OD) measurement at 660 nm—that is, 1 OD$_{660}$ = 108 colony forming units (CFU)/ml.

Cell culture

The cell line SGC-7901, derived from a human gastric adenocarcinoma, was used in our study (Institute of Cytobiology of Chinese Academy of Sciences, Shanghai, China). Cells were grown in culture flasks containing RPMI 1640 culture medium supplemented with 10% FCS at 37°C in a humidified atmosphere with 5% CO$_2$. For the evaluation of apoptosis and gene expression by fluorescence microscopy and immunohistochemistry, the cells were cultured on chamber slides in RPMI 1640 medium.

Co-culture of the gastric cells and \textit{H pylori}

The gastric cells were seeded into flasks or the wells of microtitre plates at a density of 5 x 105 cells/ml or 5 x 104 cells/well, respectively. The flasks or microtitre plates were incubated overnight, and washed three times in RPMI 1640 medium. Then, medium containing intact, viable \textit{H pylori} cells, ranging from 3.2 x 106 to 1.0 x 108 CFU/ml, was added, in quadruplicate, to corresponding flasks or wells. Co-culture of the gastric cells and \textit{H pylori} was performed for 48 hours before the determination of cellular apoptosis and the expression of apoptosis related proteins. The mean (SD) of the quadruplicate tests was used to assess the effect of \textit{H pylori} on apoptosis and the expression of apoptosis related proteins at certain densities of \textit{H pylori} cells.

Assessment of apoptosis

Apoptosis was assessed by three independent methods, namely: transmission electron microscopy, DNA specific fluorochrome staining, and flow cytometry.

Transmission electron microscopy

The gastric cells co-cultured with \textit{H pylori} for 48 hours were harvested with a rubber policeman. The cell pellets were fixed with 2.5% glutaraldehyde for two hours, and then with 1% OsO$_4$ for 90 minutes. Next, the cells were dehydrated in an ethanol gradient, and embedded and polymerised at 60°C for 24 hours. Finally, ultrathin sections (40–80 nm) were prepared, double stained with 1% uranyl acetate and lead citrate, and examined by transmission electron microscopy (H-600; Hitachi Corporation, Tokyo, Japan).

DNA specific fluorochrome staining

The gastric cells co-cultured with \textit{H pylori} on chamber slides for 48 hours were fixed with glacial acetic acid/methanol (3/1) for 10 minutes. Then, the cells were dehydrated in an ethanol gradient, and embedded and polymerised at 60°C for 24 hours. Finally, ultrathin sections (40–80 nm) were prepared, double stained with 1% uranyl acetate and lead citrate, and examined by transmission electron microscopy (H-600; Hitachi Corporation, Tokyo, Japan).

Table 1: Apoptotic index (AI) of SGC-7901 cells after co-culture with increasing concentrations of \textit{Helicobacter pylori} for 48 hours using DNA specific fluorochrome staining and flow cytometry

<table>
<thead>
<tr>
<th>Concentration of \textit{H pylori} (CFU/ml)</th>
<th>Mean apoptotic index (SD)</th>
<th>Fluorochrome staining</th>
<th>Flow cytometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (control)</td>
<td>1.68 (0.13)</td>
<td>1.70 (0.12)</td>
<td></td>
</tr>
<tr>
<td>3.2 x 104</td>
<td>2.33 (0.44)</td>
<td>2.30 (0.27)</td>
<td></td>
</tr>
<tr>
<td>1.6 x 105</td>
<td>3.55 (0.24)</td>
<td>3.56 (0.11)</td>
<td></td>
</tr>
<tr>
<td>8.0 x 105</td>
<td>5.35 (0.37)</td>
<td>5.31 (0.75)</td>
<td></td>
</tr>
<tr>
<td>4.0 x 106</td>
<td>9.53 (0.15)*</td>
<td>9.49 (0.17)*</td>
<td></td>
</tr>
</tbody>
</table>

Apoptotic index of gastric cells was defined by the percentage of apoptotic cells over the total number of cells counted. *p<0.01, compared with control; †one way ANOVA, p<0.01.

CFU, colony forming units.
hours were fixed with glacial acetic acid/methanol (3/1), and Gastric cells co-cultured with proteins Assessing the expression of the Bcl-2, Bax, and c-Myc metry (BD Company, New York, USA) for cell apoptosis. The gastric cells co-cultured with Helicobacter pylori were harvested and fixed with 70% alcohol for 12 hours at 20°C. Next, the slides were stained with the avidin–biotin complex and developed with diaminobenzidine-hydrogen peroxidase substrate (DAB; Maxim Biotech, Fuzhou, China), and lightly counterstained with haematoxylin. All antibodies and the avidin–biotin complex were purchased from Maxim Biotech and were ready to use without further dilution.

For each slide, cells were counted for immunostaining in five randomly chosen fields with at least 100 cells in each field. The intensity of immunostaining was scored as follows: 0, negative; 1+, weak; 2+, moderate; and 3+, strong. Cells with moderate or strong immunostaining were defined as positively stained. The percentage of positively stained cells over the total number of cells counted was calculated to provide the positive rate.

Measurement of c-Myc mRNA

The gastric cells co-cultured with *H pylori* in flasks for 48 hours were harvested. c-Myc mRNA in the cells was measured by the reverse transcription-polymerase chain reaction (RT-PCR). The primers specific for c-Myc were c1 (5′-GCATCCACGAAAATTP3′) and c2 (5′-AACGTGAGGGGCAF3′). The primers specific for β-actin (as an internal reference) were β1 (5′-CTCAAATGAGCTGCTGCTGC-3′) and β2 (5′-CACGTCCAGCCAGGATGCG-3′).

RNA was extracted from the cells using a total RNA extraction kit (SABC, Shanghai, China). Contaminated DNA was removed by treating the samples with RNase free DNase I (Promega, Madison, Wisconsin, USA). RT-PCR was performed using a reverse transcription system (Promega), according to the manufacturer's instructions. Briefly, the first strand cDNA was synthesised using the c2 and β2 primers and avian myeloblastosis virus reverse transcriptase (Promega), followed by PCR amplification using the c1, c2, β1, and β2 primers. PCR amplification was performed for 30 cycles. The PCR products were electrophoresed on a 40% polyacrylamide gel and stained with AgNO3. The average grey density of the c-Myc RT-PCR products in the polyacrylamide gel electrophoresis (PAGE) bands, which reflects the extent of c-Myc mRNA expression, was analysed using an image analysis system (IAS-1000; Quality Engineering Associates, Burlington, USA).

Statistical analysis

The *t* test for independent samples was used to determine the difference in the apoptotic index, and the expression of the Bcl-2, Bax, and c-Myc proteins and c-Myc mRNA between each study group and the control. One way ANOVA was used to determine the effect of increasing numbers of *H pylori* on apoptosis and the expression of the Bcl-2, Bax, and c-Myc proteins and c-Myc mRNA. All *p* values calculated were two tailed; the α level of significance was set at *p* < 0.05.

RESULTS

Effect of *H pylori* on apoptosis

The ultrastructural changes associated with apoptosis in SGC-7901 cells after co-culture with *H pylori* for 48 hours are shown in fig 1A and B. These changes included condensation beneath the nuclear membrane of irregular, crescent shaped, highly osmiophilic chromatin and the formation of membrane bound fragments (apoptotic bodies), as described previously. DNA specific fluorescent staining also demonstrated the typical morphological changes of apoptosis in the gastric cells after

then used to detect the expression of the Bcl-2, Bax, and c-Myc proteins by means of immunohistochemistry. Briefly, the slides were treated with 3% hydrogen peroxide for 60 minutes at 37°C, and incubated with rabbit monoclonal anti-human Bcl-2 or c-Myc antibody for 30 minutes, or with mouse monoclonal antibody for 90 minutes at 37°C, followed by the application of biotinylated goat anti-rabbit or antimouse immunoglobulins for 10 minutes at 37°C. Next, the slides were stained with the avidin–biotin complex and developed with diaminobenzidine-hydrogen peroxidase substrate (DAB; Maxim Biotech, Fuzhou, China), and lightly counterstained with haematoxylin. All antibodies and the avidin–biotin complex were purchased from Maxim Biotech and were ready to use without further dilution.

For each slide, cells were counted for immunostaining in five randomly chosen fields with at least 100 cells in each field. The intensity of immunostaining was scored as follows: 0, negative; 1+, weak; 2+, moderate; and 3+, strong. Cells with moderate or strong immunostaining were defined as positively stained. The percentage of positively stained cells over the total number of cells counted was calculated to provide the positive rate.

Flow cytometric analysis

The gastric cells co-cultured with *H pylori* in flasks for 48 hours were harvested and fixed with 70% alcohol for 12 hours at –20°C. Next, the cells were incubated with propidium iodide (50 μg/ml) and RNase A (5 μg/ml) for 30 minutes at room temperature in the dark. The cells were analysed by flow cytometry (BD Company, New York, USA) for cell apoptosis.

Assessing the expression of the Bcl-2, Bax, and c-Myc proteins

Gastric cells co-cultured with *H pylori* on chamber slides for 48 hours were fixed with glacial acetic acid/methanol (3/1), and apoptotic. The apoptotic index of gastric cells was determined by the percentage of apoptotic cells over the total number of cells counted. At least 300 cells were counted in each experiment.

Figure 3 Positive immunohistochemical staining for (A) Bax (original magnification, ×200), (B) c-Myc (original magnification, ×400), and (C) Bcl-2 (original magnification, ×200) proteins in the cytoplasm of SGC-7901 cells (arrows) after co-culture with *Helicobacter pylori* (1.6 × 10⁵ colony forming units/ml) for 48 hours.
incubation with \(H.\) pylori for 48 hours—that is, chromatin condensation and nuclear fragmentation (fig 2). There was no significant difference between the apoptotic index obtained with a bacterial density of \(3.2 \times 10^5\) CFU/ml and that seen in the control group (where no bacterial cells were added). However, the apoptotic index increased significantly when a bacterial density of \(1.6 \times 10^6\) CFU/ml or greater was used, and this occurred in a density dependent manner (table 1). Flow cytometric analysis showed similar results to the fluorochrome staining—the apoptotic index of the gastric cells started to increase at a bacterial density of \(1.6 \times 10^5\) CFU/ml, in a density dependent manner (table 1). However, a large number of necrotic cells were seen when the cells were co-cultured with \(H.\) pylori at densities of \(2 \times 10^5\) and \(1 \times 10^5\) CFU/ml, so that results obtained at these densities were considered inaccurate, and not included in the analysis.

Effect of \(H.\) pylori on the expression of Bcl-2, Bax, and c-Myc

SGC-7901 cells constitutively express Bcl-2, Bax, and c-Myc in their cytoplasm; 40%, 23.3%, and 2.2% of cells were immunostained for Bcl-2, Bax, and c-Myc, respectively, with moderate or strong intensity (table 2). The expression of the Bcl-2 and c-Myc proteins was increased (fig 3A, B), whereas the expression of the Bax protein remained at control levels. \(H.\) pylori induced apoptosis was accompanied by an increased expression of Bak (Bcl-2 associated killer gene), with little change in the expression of the other Bcl-2 family members, such as Bcl-2, Bcl-xL, or Bax. These findings were consistent with in vivo observations that the expression of Bak was increased in gastric epithelial cells in \(H.\) pylori positive patients compared with \(H.\) pylori negative patients, but there was no difference in the expression of Bcl-2. These data suggest that \(H.\) pylori induced gastric epithelial cell apoptosis is at least partially mediated by a Bak dependent pathway. In addition, we showed that co-culture with \(H.\) pylori resulted in the overexpression of Bak, and suppressed the expression of Bcl-2. These findings are in agreement with in vivo observations that \(H.\) pylori infection induces apoptosis associated with an upregulation of Bak and downregulation of Bcl-2. In contrast, an in vitro study reported that both toxic and non-toxic \(H.\) pylori strains induced the expression of the Bcl-2, Bax, and Bcl-xL proteins in p53 deleted or mutated gastric epithelial cell lines at 24 hours when apoptosis did not occur. However, the expression of Bcl-2 and Bax declined, whereas that of Bcl-xL increased, at 48 hours when apoptosis increased significantly, implying that Bcl-xL may be an important mediator in \(H.\) pylori induced apoptosis. Recently, Shibayama et al reported overexpression of two other proapoptotic Bcl-2 family members, Bad and Bid. Overall, these observations suggest that the overexpression of proapoptotic proteins and the underexpression of antiapoptotic proteins among the Bcl-2 family may play an important role in \(H.\) pylori induced apoptosis.

Table 2 Positive rate of Bcl-2, Bax, and c-Myc proteins of SGC-7901 cells after co-culture with increasing concentrations of \(H.\) pylori for 48 hours as determined using immunohistochemistry

<table>
<thead>
<tr>
<th>Concentration of (H.) pylori (CFU/ml)</th>
<th>Positive rate (% (SD))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl-2</td>
<td>Bax</td>
</tr>
<tr>
<td>0 [control]</td>
<td>40.00 (2.94)</td>
</tr>
<tr>
<td>3.2 \times 10^4</td>
<td>36.75 (1.71)</td>
</tr>
<tr>
<td>1.6 \times 10^5</td>
<td>25.25 (1.71)*</td>
</tr>
<tr>
<td>8.0 \times 10^5</td>
<td>14.50 (2.65)*</td>
</tr>
<tr>
<td>4.0 \times 10^6</td>
<td>7.75 (1.71)*†</td>
</tr>
</tbody>
</table>

*p<0.01, compared with control; †one way ANOVA, p<0.01.

Table 3 Mean grey density of c-Myc RT-PCR products of SGC-7901 cells in PAGE bands after co-culture with increasing concentrations of \(H.\) pylori for 48 hours

<table>
<thead>
<tr>
<th>Concentration of (H.) pylori (CFU/ml)</th>
<th>Mean grey density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 [control]</td>
<td>156.2 (27.6)</td>
</tr>
<tr>
<td>3.2 \times 10^4</td>
<td>172.4 (4.2)*</td>
</tr>
<tr>
<td>1.6 \times 10^5</td>
<td>203.7 (3.7)*</td>
</tr>
<tr>
<td>8.0 \times 10^5</td>
<td>219.4 (1.4)*</td>
</tr>
<tr>
<td>4.0 \times 10^6</td>
<td>228.8 (3.2)*†</td>
</tr>
</tbody>
</table>

*p<0.01, compared with control; †one way ANOVA, p<0.01.

DISCUSSION

Most previous studies evaluating the association between \(H.\) pylori infection and apoptosis have used the terminal uridine deoxynucleotide nick end labelling method to identify apoptotic cells in gastric biopsy specimens. Although this technique is an important method for visualising apoptotic cells, it has the limitation of being unable to discriminate between apoptosis and necrosis. In our present study, three different techniques—namely, transmission electron microscopy, fluorochrome staining, and flow cytometry—were used to determine apoptosis. Our findings confirmed that \(H.\) pylori induces apoptosis in gastric cells in vitro, consistent with previous studies carried out both in vitro and in vivo. The mechanism by which \(H.\) pylori induces apoptosis has yet to be elucidated. Both bacterial factors and the host response may be involved in the induction of apoptosis. The bacterial factors may include the VacA cytotoxin and lipopolysaccharide, and various cytokines such as tumour necrosis factor \(\alpha\), interferon \(\gamma\), interleukin 2, and interleukin 1 during \(H.\) pylori infection, as part of the host response, may also contribute to \(H.\) pylori induced apoptosis. Although knowledge of the genetic background of \(H.\) pylori induced apoptosis is scarce, previous studies have reported that p53 is involved in \(H.\) pylori associated apoptosis of gastric mucosa, although other studies suggest that \(H.\) pylori induced apoptosis is mediated by multiple eukaryotic signalling cascades that are not dependent upon increased p53 concentrations. A few studies have investigated the role of the Bcl-2 family in \(H.\) pylori induced apoptosis. In cell culture, \(H.\) pylori induced apoptosis was accompanied by an increased expression of Bak (Bcl-2 associated killer gene), with little change in the expression of the other Bcl-2 family members, such as Bcl-2, Bcl-xL, or Bax. These findings were consistent with in vivo observations that the expression of Bak was increased in gastric epithelial cells in \(H.\) pylori positive patients compared with \(H.\) pylori negative patients, but there was no difference in the expression of Bcl-2. These data suggest that \(H.\) pylori induced gastric epithelial cell apoptosis is at least partially mediated by a Bak dependent pathway. In addition, in our present study, we showed that co-culture with \(H.\) pylori resulted in the overexpression of Bak, and suppressed the expression of Bcl-2. These findings are in agreement with in vivo observations that \(H.\) pylori infection induces apoptosis associated with an upregulation of Bak and downregulation of Bcl-2. In contrast, an in vitro study reported that both toxic and non-toxic \(H.\) pylori strains induced the expression of the Bcl-2, Bax, and Bcl-xL proteins in p53 deleted or mutated gastric epithelial cell lines at 24 hours when apoptosis did not occur. However, the expression of Bcl-2 and Bax declined, whereas that of Bcl-xL increased, at 48 hours when apoptosis increased significantly, implying that Bcl-xL may be an important mediator in \(H.\) pylori induced apoptosis. Recently, Shibayama et al reported overexpression of two other proapoptotic Bcl-2 family members, Bad and Bid. Overall, these observations suggest that the overexpression of proapoptotic proteins and the underexpression of antiapoptotic proteins among the Bcl-2 family may play an important role in \(H.\) pylori induced apoptosis.

“Our findings are in agreement with in vivo observations that \(H.\) pylori infection induces apoptosis associated with an upregulation of Bak and downregulation of Bcl-2”

In a previous study, Nardone et al detected the overexpression of the c-Myc protein in a substantial proportion (36%) of...
patients with gastric carcinoma, and in some patients with H pylori associated atrophic gastritis (15%), whereas this protein was not found in normal controls. However, no data on apoptosis were given, and the association between c-Myc and H pylori induced apoptosis remains unknown. Therefore, our present study was the first, to our knowledge, to explore this issue. Our results clearly showed that co-culture of SGC-7901 cells with H pylori for 48 hours led to an increase in cell apoptosis, which was accompanied by the increased expression of the c-Myc protein and mRNA. This indicates that the c-Myc gene in addition to the Bcl-2 family of genes, may be involved in regulating H pylori induced apoptosis, although in vivo studies are required to confirm this observation.

One limitation of our study was that the cells tested were derived from a human gastric cancer, which may not respond to H pylori in the same manner as intact gastric epithelial cells. It has been shown that cancer cell lines undergo about 50% less apoptosis in response to H pylori than cells in primary culture. However, non-transformed gastric cell lines are rarely available, and primary cultures are difficult to achieve. For these reasons, almost all studies evaluating the effect of H pylori on apoptosis of gastric epithelial cells in vitro have used gastric cancer cell lines. In our present study, a model of co-culture of H pylori with the gastric cancer cell line, SGC-7901, was established, which produced similar results obtained with other gastric cancer cells including AGS, a commonly used cell line.

In conclusion, H pylori induced apoptosis in gastric epithelial cells is mediated by the altered expression of the Bcl-2, Bax, and c-Myc genes.

References

www.molpath.com
Nuclear inclusions go missing from neurones in hereditary ataxias

Mystery surrounding the events leading to degeneration of neurones in hereditary ataxias has deepened, as an immunohistochemical study discloses complete absence of nuclear inclusions in Purkinje cells in human brain stems. At least two opposing explanations are possible.

Nuclear inclusions are of interest because they are usually common in Purkinje cells in the brain stem in 10 or so inherited neurodegenerative diseases and contain products of the CAG repeat sequences in the disease gene. The authors chose four diseases with different degrees of cerebellar degeneration and compared the extent of nuclear inclusions, for evidence of a common pathogenesis.

The results were perplexing. Nuclear inclusions positive for either of two gene products—ubiquitin or polyglutamine—were restricted to the dentate nucleus in three diseases—spinocerebellar ataxia (SCA) 1, SCA3, and dentatorubral pallidoluysian atrophy (DRPLA)—and Golgi cells in SCA1, SCA2, and DRPLA. None occurred in Purkinje cells from any source.

A link between nuclear inclusions and neurodegeneration consistent with the results could be explained in two ways. If they were lethal early cell death could lead to their absence or if they were protective their absence would indicate impending cell death. Others have observed lack of nuclear inclusions in other diseases in this group. It seems that only more effort will unravel any link.

Brain stems were obtained from 13 patients with SC1, SC2, SC3, or DRPLA and three controls with neither neurological nor psychiatric conditions. Serial sections from each were stained for ubiquitin or polyglutamine with specific antisera.