Skip to main content
Log in

Complement component C4 gene intron 9 as a phylogenetic marker for primates: long terminal repeats of the endogenous retrovirus ERV-K(C4) are a molecular clock of evolution

  • Original Papers
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The complement component C4 genes of Old World primates exhibit a long/short dichotomous size variation, except that chimpanzee and gorilla only contain short C4 genes. In human it has been shown that the long C4 gene is attributed to the integration of an endogenous retrovirus, HERV-K(C4), into intron 9. This 6.36 kilobase retroviral element is absent in short C4 genes. Here it is shown that the homologous endogenous retrovirus, ERV-K(C4), is present precisely at the same position in the long C4 gene of orangutan and African green monkey. Determination of the short C4 gene intron 9 sequences from human, three apes, two Old World monkeys, and a New World monkey allowed the establishment of consistent phylogenetic trees for primates, which favors a chimpanzee-gorilla clade. The 5′ long terminal repeats (LTR) and 3′ LTR of ERV-K(C4) in long C4 genes of human, orangutan, and African green monkey have similar sequence divergence values of 9.1%–10.5%. These values are more than five-fold higher than the sequence divergence of the homologous intron 9 sequences between the long and short C4 genes in higher primates. The latter is probably a result of homogenization or concerted evolution. We suggest that the 5′ LTR and 3′ LTR of an endogenous retrovirus can serve as a reliable reference point or a molecular clock for studies of gene duplication and gene evolution. This is because the 5′/3′ LTR sequences were identical at the time of retroviral integration and evolved independently of each other afterwards. Our data provides strong evidence for the short C4 gene being the ancestral form in primates, trans-species evolution, and the “slow-down” phenomenon of the sequence divergence in great apes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews, P. Evolution and environment in the Hominoidea. Nature 360: 641–646, 1992

    Google Scholar 

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley-Interscience, New York, 1987

    Google Scholar 

  • Avise, J. C. Interpretive Tools. In J. C. Avise (ed.): Molecular Markers, Natural History and Evolution, pp. 92–138, Chapman and Hall, New York, 1994

    Google Scholar 

  • Bontrop, R. E., Broos, L. A. M., Otting, N., and Jonker, M. J. Polymorphism of C4 and CYP21 genes in various primate species. Tissue Antigens 37: 145–151, 1991

    Google Scholar 

  • Bristow, J., Tee, M. K., Gitelman, S. E., Mellon, S. H., and Miller, W. L. Tenascin-X: a novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B. J Cell Biol 122: 265–278, 1993

    Google Scholar 

  • Britten, R. J. Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398, 1986

    Google Scholar 

  • Carroll, M. C., Belt, T., Palsdottir, A., and Porter, R. R. Structure and organization of the C4 genes. Philos Trans R Soc Lond 306: 379–388, 1984

    Google Scholar 

  • Dangel, A. W., Mendoza, A. R., Baker, B. J., Daniel, C. M., Carroll, M. C., Wu, L-C., and Yu, C. Y. The dichotomous size variation of human complement C4 gene is mediated by a novel family of endogenous retroviruses which also establishes species-specific genomic patterns among Old World primates. Immunogenetics 40: 425–436, 1994

    Google Scholar 

  • Felsenstein, J. Phylip Manual, version 3.4, Berkley Herbarium, University of Berkley, Berkley, 1991

    Google Scholar 

  • Fitch, W. M. and Margolish, E. Toward defining the course of evolution: minimum change for a specific tree topology. Sys Zool 20: 406–416, 1971

    Google Scholar 

  • Genetics Computer Group, Inc. GCG Sequence Analysis Software Package: Program Manual, Version 7, Genetics Computer Group, Inc., Madison, 1991

    Google Scholar 

  • Granados, J., Aweh, Z. L., Chen, J.-H., Giles, C. M., Balmer, H., Yunis, E. J., and Alper, C. A. There are two C4 genetic loci and a null allele in the chimpanzee. Immunogenetics 26: 344–350, 1987

    Google Scholar 

  • Green, H. and Djian, P. Consecutive actions of different gene-altering mechanisms in the evolution of involucrin. Mol Biol Evol 9: 977–1017, 1992

    Google Scholar 

  • Higgins, D. G. and Sharp, P. M. Fast and sensitive multiple sequence alignment on microcomputer. CABIOS 5: 151–153, 1989

    Google Scholar 

  • Horai, S., Satta, Y., Hayasaka, K., Kondo, R., Inoue, T., Ishida, T., Hayashi, S., and Takahata, N. Man's place in Hominoidea revealed by mitochondrial DNA genealogy. J Mol Evol 35: 32–43, 1992

    Google Scholar 

  • Kawaguchi, H. and Klein, J. Organization of C4 and CYP21 loci in gorilla and orangutan. Hum Immunol 33: 153–162, 1992

    Google Scholar 

  • Kawaguchi, H., O'hUigin, C., and Klein, J. Evolution of primate C4 and CYP21 genes. In J. Klein and D. Klein (eds.): Molecular Evolution of the Major Histocompatibility Complex, pp. 357–381, Springer, Heidelberg, 1991

    Google Scholar 

  • Kawaguchi, H., O'hUigin, C., and Klein, J. Evolutionary origin of mutations in the primate cytochrome P450c21 gene. Am J Hum Genet 50: 766–780, 1992a

    Google Scholar 

  • Kawaguchi, H., Zaleska-Rutczynska, Z., Figueroa, F., O'hUigin, C., and Klein, J. C4 genes of the chimpanzee, gorilla, and orang-utan: evidence for extensive homogenization. Immunogenetics 35: 16–23, 1992b

    Google Scholar 

  • Kawamura, S., Saitou, N., and Ueda, S. Concerted evolution of the primate immunoglobulin α-gene through gene conversion. J Biochem 267: 7359–7367, 1992

    Google Scholar 

  • Klein, J., Takahata, N., and Ayala, F. J. MHC polymorphism and human origins. Sci Am 269: 78–83, 1993

    Google Scholar 

  • Kluge, A. G. and Farris, J. S. Quantitative phylogenetics and the evolution of anurans. Sys Zool 18: 1–32, 1969

    Google Scholar 

  • Li, W.-H. and Tanimura, M. The molecular clock runs more slowly in man than in apes and monkeys. Nature 326: 93–96, 1987

    Google Scholar 

  • Mariani-Costantini, R., Horn, T. M., and Callahan, R. Ancestry of a human endogenous retrovirus family. J Virol 63: 4982–4985, 1989

    Google Scholar 

  • Mayer, W. E., Jonker, M., Klein, D., Ivanyi, P., van Severter, G., and Klein, J. Nucleotide sequence of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO J 7(9): 2765–2774, 1988

    Google Scholar 

  • Minghetti, P. P. and Dugaiczyk, A. The emergence of new DNA repeats and divergence of primates. Proc Natl Acad Sci USA 90: 1872–1876, 1993

    Google Scholar 

  • Miyamoto, M. M., Slightom, J. L., and Goodman, M. Phylogenetic relations of humans and African apes from DNA sequences in the psi eta-globin region. Science 238: 369–373, 1987

    Google Scholar 

  • Ono, M., Yasunaga, T., Miyata, T., and Ushikubo, H. Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. J Virol 60: 589–598, 1986

    Google Scholar 

  • Paz-Artal, E., Corell, A., Alvarez, M., Varela, P., Allende, L., Mardrono, A., Rosal, M., and Arnaiz-Villena, A. C4 gene polymorphism in primates: evolution, generation, and Chido and Rodgers antigenicity. Immunogenetics 40: 381–396, 1994

    Google Scholar 

  • Porter, R. R. Complement polymorphism, the major histocompatibility complex and associated diseases: a speculation. Mol Biol Med 1: 161–168, 1983

    Google Scholar 

  • Ruvolo, M., Disotell, T. R., Allard, M. W., Brown, W. M., and Honeycutt, R. L. Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence. Proc Natl Acad Sci USA 88: 1570–1574, 1991

    Google Scholar 

  • Saiki, R. Amplification of genomic DNA.M.A. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.): PCR Protocols: A Guide to Methods and Applications, pp. 13–20. Academic Press, San Diego, 1990

    Google Scholar 

  • Saitou, N. and Nei, M. The neighbour-joining method: a new method for reconstructing evolutionary trees. Mol Biol Evol 4: 406–425, 1987

    Google Scholar 

  • Shen, L. M., Wu, L. C., Sanlioglu, S., Chen, R., Mendoza, A. R., Dangel, A., Carroll, M. C., Zipf, W., and Yu, C. Y. Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and C4B genes in the HLA class II region: molecular cloning, exon-intron structure, composite retroposon and breakpoint of gene duplication. J Biol Chem 269: 8466–8476, 1994

    Google Scholar 

  • Sneath, P. H. A. and Sokal, R. R. Numerical Taxonomy, W. H. Freeman and Co., San Francisco, 1973

    Google Scholar 

  • Wilkinson, D. A., Mager, D. L., and Leong, J. C. Endogenous Human Retroviruses. In J. A. Levy (ed.): The Retroviridae (vol 3), pp. 465–535. Plenum Press, New York, 1994

    Google Scholar 

  • Yu, C. Y. The complete exon-intron structure of a human complement component C4A gene: DNA sequences, polymorphism, and linkage to the 21-hydroxylase genes. J Immunol 146: 1057–1066, 1991

    Google Scholar 

  • Yu, C. Y., Belt, K. T., Giles, C. M., Campbell, R. D., and Porter, R. R. Structural basis of the polymorphism of human complement component C4A and C4B: gene size, reactivity and antigenicity. EMBO J 5: 2873–2881, 1986

    Google Scholar 

  • Yu, C. Y. and Campbell, R. D. Definitive RFLPs to distinguish between the human complement C4A/C4B isotypes and the major Rodgers/Chido determinants: application to the study of C4 null alleles. Immunogenetics 25: 384–390, 1987

    Google Scholar 

  • Zhang, W. J., Christiansen, F. T., Wu, X., Abraham, L. J., Giphart, M., and Dawkins, R. L. Organization and evolution of C4 and CYP21 genes in primates: importance of genomic segments. Immunogenetics 37: 170–176, 1993

    Google Scholar 

  • Zhu, Z.-B., Jian, B., and Volanakis, J. E. Ancestry of SINE-R.C2: a human specific retroposon. Hum Genet 93: 545–551, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers L38796-L38807

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dangel, A.W., Baker, B.J., Mendoza, A.R. et al. Complement component C4 gene intron 9 as a phylogenetic marker for primates: long terminal repeats of the endogenous retrovirus ERV-K(C4) are a molecular clock of evolution. Immunogenetics 42, 41–52 (1995). https://doi.org/10.1007/BF00164986

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00164986

Keywords

Navigation