Skip to main content
Log in

Structures of EF-hand Ca 2+-binding proteins: Diversity in the organization, packing and response to Ca 2+ Binding

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

The growing database of three-dimensional structures of EF-hand calcium-binding proteins is revealing a previously unrecognized variability in the coformations and organizations of EF-hand binding motifs. The structures of twelve different EF-hand proteins for which coordinates are publicly available are discussed and related to their respective biological and biophysical properties. The classical picture of calcium sensors and calcium signal modulators is presented, along with variants on the basic theme and new structural paradigms.© Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed FR, Rose DR, Evans SV, Pippy ME, To R. 1993 Refinement of recombinant oncomodulin at 1.30 Å resolution. J Mol Biol 230, 1216–1224

    Google Scholar 

  • Akke M, Forsén S, Chazin WJ. 1995 Solution structure of (Cd2+)1-calbindin D9k reveals details of the stepwise structural changes along the apo →(Ca2+)II,1 →(Ca2+)I,II,2 binding pathway. J Mol Biol 252, 102–121

    Google Scholar 

  • Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M. 1997 Molecular mechanics of calcium-myristoyl switches. Nature 389, 198–202

    Google Scholar 

  • Ames JB, Porumb T, Tanaka T, Ikura M, Stryer L. 1995 Amino-terminal myristoylation induces cooperative calcium binding to recoverin. J Biol Chem 270, 4526–4533

    Google Scholar 

  • Ames JB, Tanaka T, Stryer L, Ikura M. 1996 Portrait of a myristoyl-switch protein. Curr Opin Struct Biol 6, 432–438

    Google Scholar 

  • Andersson M, Malmendal A, Linse S, Ivarsson I, Forsén S, Svensson LA. 1997 Structural basis for the negative allostery between Ca2+-and Mg2+-binding to the intacellular Ca2+-receptor calbindin D9k. Protein Sci 6, 1139–1147

    Google Scholar 

  • Babu Y S, Bugg CE, Cook WJ. 1988 Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204, 191–204

    Google Scholar 

  • Bagshaw CR, Kendrick-Jones J. 1979 Characterization of homologous divalent metal ion binding sites of vertebrate and molluscan myosins using electro paramagnetic resonance spectroscopy. J Mol Biol 130, 317–336

    Google Scholar 

  • Baldellon C, Padilla A, Cave A. 1992 Kinetics of amide proton exchange in parvalbumin studied by 1H 2-D NMR. A comparison of the calcium and magnesium loaded forms. Biochimie 74, 837–844

    Google Scholar 

  • Barbato G, Ikura M, Kay LE, Pastor RW, Bax A. 1992 Backbone dynamics of calmodulin studied by 15N relaxation using inverse deteced two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269–5278

    Google Scholar 

  • Bayley PM, Findlay WA, Martin SR. 1996 Target recognition by calmodulin: Dissecting the kinetics and affinity of interaction using short peptide sequences. Protein Sci 5, 1215–1228

    Google Scholar 

  • Blanchard H, Grochulski P, Li Y, Arthur SC, Davies PL, Elce JS, Cygler M. 1997 Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes. Nature Struct Biol 4, 532–538

    Google Scholar 

  • Blanchard H, Li Y, Cygler M, Kay CM, Arthur JSC, Davies PL, Elce JS. 1996 Ca2+-binding domain VI of rat calpain is a homodimer in solution: hydrodynamic, crystallization and preliminary X-ray diffraction studies. ProteinSci 5, 533–537

    Google Scholar 

  • Blancuzzi Y, Padilla A, Parello J, Cave A. 1993 Symmetrical rearrangement of the cation-binding sites of parvalbumin upon Ca2+/Mg2+ exchange. A study by 1H 2D NMR. Biochemistry 32, 1302–1309

    Google Scholar 

  • Chattopadhyaya R, Meador W, Means A, Quiocho F. 1992 Calmodulin structure refined at 1.7 Å resolution. J Mol Biol 228, 1177–1192

    Google Scholar 

  • Chen C-K, Inglese J, Lefkowitz RJ, Hurley JB. 1995 Ca2+-dependent interaction of recoverin and rhodopsin kinase. J Biol Chem, 18060–18066

  • Cheney RE, Mooseker MS. 1992 Unconventional myosins. Curr Opin Cell Biol 4, 27–35

    Google Scholar 

  • Clipstone NA, Crabtree GR. 1992 Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357, 695–697

    Google Scholar 

  • Cook WJ, Jeffrey LC, Cox JA, Vijay-Kumar S. 1993 Structure of a sarcoplasmic calcium-binding protein from amphioxus refined at 2.4 Å resolution. J Mol Biol 229, 461–471

    Google Scholar 

  • Cox JA, Stein EA. 1981 Characterization of a new sarcoplasmic calcium-binding protein with magnesium-induced cooperativity in the binding of calcium. Biochemistry 20, 5430–5436

    Google Scholar 

  • Crawford C, Brown NR, Willis AC. 1993 Studies of the active site of m-calpain and the interaction with calpastatin. Biochem J 296, 135–142

    Google Scholar 

  • Crivici A, Ikura M. 1995 Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24, 85–116

    Google Scholar 

  • Declercq J-P, Tinant B, Parello J, Rambaud J. 1991 Ionic interactions with parvalbumins: crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. J Mol Biol 220, 1017–1039

    Google Scholar 

  • Drohat AC, Amburgey JC, Abildgaard F, Starich MR, Baldisseri D, Weber DJ. 1996 Solution structure of rat apo-S100B(bb) as determined by NMR spectroscopy. Biochemistry 35, 11577–11588

    Google Scholar 

  • Drohat AC, Baldisseri DM, Rustandi RR, Weber DJ. 1998 Solution structure of calcium-bound rat S100B(ββ) as determined by nuclear magnetic resonance spectroscopy. Biochemistry 37, 2729–2740

    Google Scholar 

  • Engelborghs Y, Mertens K, Willaert K, Luan-Rilliet Y, Cox JA. 1990 Kinetics of conformational changes in Nereis sarcoplasmic calcium-binding protein upon binding of divalent ions. J Biol Chem 265, 18809–18815

    Google Scholar 

  • Evënas J, Thulin E, Malmendal A, Forsén S, Carlstrom G. 1997 NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state. Biochemistry 36, 3448–3457

    Google Scholar 

  • Findlay WA, Martin SM, Beckingham K, Bayley PM. 1995 Recovery of native structure by calcium binding site mutants of calmodulin upon binding of sk-MLCK target peptides. Biochemistry 34, 2087–2094

    Google Scholar 

  • Finn BE, Evënas J, Crakenberg T, Waltho JP, Thulin E, Forsén S. 1995 Calcium-induced structural changes and domain autonomy in calmodulin. Nature Struct Biol 2, 777–783

    Google Scholar 

  • Flaherty KM, Zozulya S, Stryer L, McKay DB. 1993 Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 75, 709–716

    Google Scholar 

  • Gagné S, Tsuda S, Li M, Smillie L, Sykes B. 1995 Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nature Struct Biol 2, 784–789

    Google Scholar 

  • Gagné SM, Li MX, Sykes BD. 1997 Mechanism of direct coupling between binding and induced structural change in regulatory calcium binding proteins. Biochemistry 36, 4386–4392

    Google Scholar 

  • Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA. 1995 X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKB12-FK506 complex. Cell 82, 507–522

    Google Scholar 

  • Haiech J, Kilhoffer M-C, Lukas TJ, Craig TA, Roberts DM, Watterson DM. 1991 Restoration of calcium binding activity of mutant calmodulins toward normal by presence of a calmodulin binding structure. J Biol Chem 266, 3427–3431

    Google Scholar 

  • Heidorn DB, Trewhella J. 1988 Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry 27, 909–915

    Google Scholar 

  • Hermann A, Cox JA. 1995 Sarcoplasmic calcium-binding protein. Comp Biochem Biophys Res Comm 235, 271–275

    Google Scholar 

  • Herzberg O, James MNG. 1985 Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution. Nature 313, 653–659

    Google Scholar 

  • Herzberg O, James MNG. 1988 Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution. J Mol Biol 203, 761–779

    Google Scholar 

  • Herzberg O, Moult J, James MNG. 1986 A model for the Ca2+-induced conformational transition of troponin C. J Biol Chem 261, 2638–2644

    Google Scholar 

  • Hohenester E, Maurer P, Hohenadl C, Timpl R, Jansonius JN, Engel J. 1996 Structure of a novel extracellular Ca2+-binding module in BM-40. Nature Struct Biol 3, 67–73

    Google Scholar 

  • Hohenester E, Maurer P, Timpl R. 1997 Crystal structure of a pair of follistatin-like and EF-hand calcium-binding domains in BM-40. EMBO J 16, 3778–3786

    Google Scholar 

  • Houdusse A, Cohen C. 1996 Structure of the regulatory domain of scallop myosin at 2 Å resolution: implications for regulation. Structure 4, 21–32

    Google Scholar 

  • Houdusse A, Love ML, Dominguez R, Granarek Z, Cohen C. 1997 Structures of four Ca2+-bound troponin C at 2 Å resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure 5, 1695–1711

    Google Scholar 

  • Houdusse A, Silver M, Cohen C.1996 A model of Ca2+-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Structure 4, 1475–1490

    Google Scholar 

  • Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB, Bax A. 1992 Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–638

    Google Scholar 

  • Jansco A, Szent-Gyorgyi AG. 1994 Regulation of scallop myosin by the regulatory light chain depends on a single glycine residue. Proc Natl Acad Sci USA 91, 8762–8766

    Google Scholar 

  • Johansson C, Ullner M, Drakenberg T. 1993 The solution structures of mutant calbindin D9k's, as determined by NMR, show that the calcium-binding site can adopt different folds. Biochemistry 32, 8429–8438

    Google Scholar 

  • Kennedy MT, Brockman H, Rusnak F. 1996 Contributions of myristoylation to calcineurin structure/function. J Biol Chem 271, 26517–26521

    Google Scholar 

  • Kilby PM, Van Eldik LJ, Roberts GCK. 1996 The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure 4, 1041–1052

    Google Scholar 

  • Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE, Moomaw EW, Gastinel LN, N, Chen X, Maldonado F, Barker JE, Bacquet R Villafranca JE. 1995 Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 378, 641–644

    Google Scholar 

  • Klee CB, Draetta GF, Hubbard MJ. 1988 Calcineurin. Adv Enzymol 61, 149–200

    Google Scholar 

  • Klee CB, Krinks MH. 1978 Purification of cyclic 3',5'-nucleotide phosphodiesterase inhibitory protein by affinity chromotography on activator protein coupled to sepharose. Biochemistry 17, 120–126

    Google Scholar 

  • Klenchin VA, Calvert PD, Bownds MD. 1995 Inhibition of rhodopsin kinase by recoverin. J Biol Chem 270, 16147–16152

    Google Scholar 

  • Kördel J, Skelton N, Akke M, Chazin W. 1993 High resolution solution structure of calcium-loaded calbindin D9k. J Mol Biol 231, 711–734

    Google Scholar 

  • Kretsinger RH, Nockolds CE. 1973 Carp muscle calcium-binding protein: II. structure determination and general description. J Biol Chem 248, 3313–3326

    Google Scholar 

  • Kuboniwa H, Tjandra N, Grzesiek S, Ren H, Klee CB, Bax A. 1995 Solution structure of calcium-free calmodulin. Nature Struct Biol 2, 768–776

    Google Scholar 

  • Lin G-d, Chattopdhyaya D, Masatoshi M, Wang KKW, Carson M, Jin L, Yuen P-w, Takano E, Hatanaka M, DeLucas LJ, Narayana SVL. 1997 Crystal structure of calcium bound domain VI of calpain at 1.9 Å resolution and its role in enzyme assembly, regulation, and inhibitor binding. Nature Struct Biol 4, 539–547

    Google Scholar 

  • Linse S, Brodin P, Drakenberg T, Thulin E, Sellers P, Elmden K, Grundstrom T, Forsén S. 1987 Structure-function relationships in EF-Hand Ca2+-binding proteins. Protein engineering and biophysical studies of calbindin D9k. Biochemistry 26, 6723–6735

    Google Scholar 

  • Linse S, Thulin E, Gifford LK, Radzewsky D, Hagan J, Wilk RR, Åkerfeldt KS. 1997 Domain organization of calbindin D28k as determined from the association of six synthetic EF-hand fragments. Protein Sci 6, 2385–2396

    Google Scholar 

  • Liu J, Farmer JD, Jr. Lane, W.S. Firedman, J. Weissman, I. Schreiber SL. 1991 Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815

    Google Scholar 

  • Martin SR, Bayley PM, Brown SE, Porumb T, Zhang M, Ikura M. 1996 Spectoscopic characterization of a high-affinity calmodulin-target peptide hybrid molecule. Biochemistry 35, 3508–3517

    Google Scholar 

  • Matsumura H, Shiba T, Inoue T, Harada S, Kai Y. 1998 A novel mode of target recognition suggested by the 2.0 Å structure of holo S100B from bovine brain. Structure 6, 233–241

    Google Scholar 

  • McPhalen CA, Sielecki AR, Santarsiero James. 1994 Refined crystal structure of rat parvalbumin, a mammalian alpha-lineage parvalbumin, at 2.0 Å resolution. J Mol Biol 235, 718–732

    Google Scholar 

  • McPhalen CA, Strynadka NCJ, James MNG. 1991 Calcium-binding sites in proteins: a structural perspective. Adv Prot Chem 42, 77–144

    Google Scholar 

  • Meador WE, Means AR, Quiocho FA. 1992 Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257, 1251–1255

    Google Scholar 

  • Meador WE, Means AR, Quiocho FA. 1993 Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262, 1718–1721

    Google Scholar 

  • Nelson MR, Chazin WJ. 1998 An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins. Protein Sci 7, 270–282

    Google Scholar 

  • Nishimura T, Goll DE. 1991 Binding of calpain fragments to calpastatin. J Biol Chem 266, 11842–11850

    Google Scholar 

  • O'Keefe SJ, Tamura J, Kincaid RL, Tocci MJ, O'Neill EA. 1992 FK-506-and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature, 692–694

  • O'Neil KT, DeGrado WF. 1990 How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci 15, 59–64

    Google Scholar 

  • Parmyakov EA, Medvedkin VN, Mitin YV, Kretsinger RH. 1991 Noncovalent complex between domain AB and domains CD*EF of parvalbumin. Biochim Biophys Acta 1076, 67–70

    Google Scholar 

  • Pauls TL, Cox JA, Berchtold MW. 1996 The Ca2+-binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. Biochim Biophys Acta 1306, 39–54

    Google Scholar 

  • Potts B, Smith J, Akke M, Macke T, Okazaki K, Hidaka H, Case D, Chazin W. 1995 The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins. Nature Struct Biol 2, 790–796

    Google Scholar 

  • Prêcheur B, Cox JA, Petrova T, Mispelter J, Craescu CT. 1996 Nereis sarcoplasmic Ca2+-binding protein has a highly unstructured apo state which is switched to the native state upon binding of the first Ca2+ ion. FEBS Letters 395, 89–94

    Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM. 1993 Three-dimensional structure of myosin subfragment-I: a molecular motor. Science 261, 50–58

    Google Scholar 

  • Rustandi RR, Drohat AC, Baldisseri DM, Wilder PT, Weber DJ. 1998 The Ca2+-dependent interaction of S100B(ββ) with a peptide derived from p53. Biochemistry 37, 1951–1960

    Google Scholar 

  • Satyshur K, Rao S, Pyzalska D, Drendel W, Greaser M, Sundraralingam M. 1988 Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2 Å resolution. J Biol Chem 263, 1628–1647

    Google Scholar 

  • Sastry M, Ketchem RR, Crescenzi O, Weber C, Lubienski MJ, Hidaka H, Chazin WJ. 1998 The three dimensional structure of Ca2+-bound calcyclin: implications for Ca2+-signal transduction by S100 proteins. Structure 6, 223–231

    Google Scholar 

  • Sellers JA, Goodson HV. 1995 Motor proteins 2: myosin. Protein Profile 2, 1323–1423

    Google Scholar 

  • Shaw GS, Hodges RS, Sykes BD. 1990 Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. Science 249, 280–283

    Google Scholar 

  • Sia SK, Li MX, Spyracopoulos L, Gagné SM, Liu W, Putkey JA, Sykes BD. 1997 Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem 272, 18216–182121

    Google Scholar 

  • Skelton NJ, Kördel J, Akke M, Forsén S, Chazin WJ. 1994 Signal transduction versus beffering activity in Ca2+-binding Proteins. Nature Struct Biol 1, 239–245.

    Google Scholar 

  • Skelton NJ, Kördel J, Chazin WJ. 1995 Determination of the solution structure of apo calbindin D9k by NMR spectroscopy. J Mol Biol 249, 441–462

    Google Scholar 

  • Smith SP, Shaw GS. 1998 A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Structure 6, 211–222

    Google Scholar 

  • Spera S, I. Mitsuhiko I, Bax A. 1991 Measurement of the exchange rates of rapidly exchanging amide protons: Application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J Biomol NMR 1, 155–165

    Google Scholar 

  • Spyracopoulos L, Li. M.X. Sia, S.K. Gangne, S.M. Chandra, M. Solaro, R.J. Sykes. 1997 Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry 36, 12138–12146

    Google Scholar 

  • Strynadka NCJ, James MNG. 1989 Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 58, 951–998

    Google Scholar 

  • Strynadka NCJ, Cherney M, Sielecki AR, Li MX, Smillie LB, James MNG. 1997 Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 Å resolution. J Mol Biol 273, 238–255

    Google Scholar 

  • Swindells MB, Ikura M. 1996 Pre-formation of the semi open conformation by the apo-calmodulin C-terminal domain and implications for binding IQ motifs. Nature Struct Biol 3, 501–504

    Google Scholar 

  • Szebenyi DME, Moffat K. 1986 The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. J Biol Chem 261, 8761–8777

    Google Scholar 

  • Szent-Györgyi AG, Chantler PD. 1994 Control of contraction by calcium binding to myosin. In: Engel AG, Franzini-Armstrong C, eds. Myology, vol. 2. McGraw-Hill: 506–528

  • Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M. 1995 Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376, 444–446

    Google Scholar 

  • Tjandra N, Kubinowa H, Bax A. 1995 Rotational dynamics of calcium-free calmodulin by 15N-NMR relaxation measurements. Eur J Biochem 230, 1014–1024

    Google Scholar 

  • Upson C, Faulheber T Jr, Kamins D, Laidlaw D, Schlegel D, Vroom J, Gurwitz R, van Dam A. 1989 The application visualization system: A computational environment for scientific visualization. Comput Graphics Appl 9, 30–42

    Google Scholar 

  • Vijay-Kumar S, Cook WJ. 1992 Structure of a sarcoplasmic calcium-binding protein from Nereis divisicolor refined at 2.0 Å resolution. J Mol Biol 224, 413–426

    Google Scholar 

  • Wimberly B, Thulin E, Chazin W. 1995 Characterization of the N-terminal half-saturated state of calbindin D9k: NMR studies of the N56A mutant. Protein Sci 4, 1045–1055

    Google Scholar 

  • Xie X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Gyorgyi AG. 1994 Structure of the regulatory domain of scallop myosin at 2.8 angstrom resolution. Nature 368, 306–312

    Google Scholar 

  • Zhang M, Tanaka T, Ikura M. 1995 Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nature Struct Biol 2, 758–767

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, M.R., Chazin, W.J. Structures of EF-hand Ca 2+-binding proteins: Diversity in the organization, packing and response to Ca 2+ Binding. Biometals 11, 297–318 (1998). https://doi.org/10.1023/A:1009253808876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009253808876

Navigation