Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eight prion strains have PrPSc molecules with different conformations

Abstract

Variations in prions, which cause different incubation times and deposition patterns of the prion protein isoform called PrP Sc , are often referred to as 'strains'. We report here a highly sensitive, conformation-dependent immunoassay that discriminates PrP Sc molecules among eight different prion strains propagated in Syrian hamsters. This immunoassay quantifies PrP isoforms by simultaneously following antibody binding to the denatured and native forms of a protein. In a plot of the ratio of antibody binding to denatured/native PrP graphed as a function of the concentration of PrP Sc , each strain occupies a unique position, indicative of a particular PrP Sc conformation. This conclusion is supported by a unique pattern of equilibrium unfolding of PrP Sc found with each strain. Our findings indicate that each of the eight prion strains has a PrP Sc molecule with a unique conformation and, in accordance with earlier results, indicate the biological properties of prion strains are 'enciphered' in the conformation of PrP Sc and that the variation in incubation times is related to the relative protease sensitivity of PrP Sc in each strain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of a conformation-dependent immunoassay for recombinant SHaPrP(90-231) purified from E. coli and folded into different conformations.
Figure 2: Conformation-dependent immunoassays of PrPs in homogenates prepared from SHa brains.
Figure 3: Eight prion strains distinguished by the conformation-dependent immunoassay.
Figure 4: Equilibrium dissociation and unfolding of PrPC and PrPSc in three prion strains.
Figure 5: Electron micrographs of pellets from control and prion-infected SHa brain homogenates precipitated by NaPTA and MgCl2.
Figure 6: Dynamic range and sensitivity of the ratio of antibody binding to PrP in denatured and native states.

Similar content being viewed by others

References

  1. Prusiner, S.B. Prion diseases and the BSE crisis. Science 278, 245–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Pattison, I.H. & Millson, G.C. Scrapie produced experimentally in goats with special reference to the clinical syndrome. J. Comp. Pathol. 71, 101–108 ( 1961).

    Article  CAS  PubMed  Google Scholar 

  3. Sigurdsson, B. Rida, a chronic encephalitis of sheep with general remarks on infections which develop slowly and some of their special characteristics. Br. Vet. J. 110, 341–354 ( 1954).

    Article  Google Scholar 

  4. Gajdusek, D.C. Unconventional viruses and the origin and disappearance of kuru. Science 197, 943–960 ( 1977).

    Article  CAS  PubMed  Google Scholar 

  5. Bruce, M.E. & Dickinson, A.G. Biological evidence that the scrapie agent has an independent genome. J. Gen. Virol. 68, 79–89 (1987).

    Article  PubMed  Google Scholar 

  6. Dickinson, A.G. & Outram, G.W. in Novel Infectious Agents and the Central Nervous System. Ciba Foundation Symposium 135 (eds. Bock, G. & Marsh, J.) 63–83 (John Wiley and Sons, Chichester, England, 1988).

    Google Scholar 

  7. Bruce, M.E. & Fraser, H. Scrapie strain variation and its implications. Curr. Top. Microbiol. Immunol. 172, 125–138 (1991).

    CAS  PubMed  Google Scholar 

  8. Fraser, H. & Dickinson, A.G. The sequential development of the brain lesions of scrapie in three strains of mice. J. Comp. Pathol. 78, 301–311 ( 1968).

    Article  CAS  PubMed  Google Scholar 

  9. Bruce, M.E., McBride, P.A. & Farquhar, C.F. Precise targeting of the pathology of the sialoglycoprotein, PrP, and vacuolar degeneration in mouse scrapie. Neurosci. Lett. 102, 1–6 (1989 ).

    Article  CAS  PubMed  Google Scholar 

  10. Taraboulos, A. et al. Regional mapping of prion proteins in brains. Proc. Natl. Acad. Sci. USA 89, 7620– 7624 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scott, M.R. et al. Propagation of prion strains through specific conformers of the prion protein. J. Virol. 71, 9032 –9044 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Prusiner, S.B. Molecular biology of prion diseases. Science 252, 1515–1522 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Cohen, F.E. et al. Structural clues to prion replication. Science 264, 530–531 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  14. Bessen, R.A. & Marsh, R.F. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol. 68, 7859–7868 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Telling, G.C. et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  16. Stahl, N. et al. Structural analysis of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32, 1991–2002 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Serban, D., Taraboulos, A., DeArmond, S.J. & Prusiner, S.B. Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins. Neurology 40, 110–117 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  18. Peretz, D. et al. A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J. Mol. Biol. 273, 614–622 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  19. Mehlhorn, I. et al. High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry 35, 5528–5537 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Kascsak, R.J. et al. Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. J. Virol. 61, 3688– 3693 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hemmilä, I. & Harju, R. Time-resolved fluorometry . in Bioanalytical Applications of Labelling Technologies (eds. Hemmilä, I., Ståhlberg, T. & Mottram, P.) 113– 119 (Wallac Oy, Turku, Finland, 1995).

    Google Scholar 

  22. Büeler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  PubMed  Google Scholar 

  23. Bessen, R.A. & Marsh, R.F. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096– 2101 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Prusiner, S.B., Scott, M.R., DeArmond, S.J. & Cohen, F.E. Prion protein biology. Cell 93, 337– 348 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Safar, J., Roller, P.P., Gajdusek, D.C. & Gibbs, C.J., Jr. Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J. Biol. Chem. 268, 20276 –20284 (1993).

    CAS  PubMed  Google Scholar 

  26. Prusiner, S.B. et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Prusiner, S.B. et al. Measurement of the scrapie agent using an incubation time interval assay. Ann. Neurol. 11, 353 –358 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. James, T.L. et al. Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 94, 10086– 10091 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pan, K.-M. et al. Conversion of α-helices into ß-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90, 10962–10966 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pergami, P., Jaffe, H. & Safar, J. Semipreparative chromatographic method to purify the normal cellular isoform of the prion protein in nondenatured form. Anal. Biochem. 236, 63–73 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  31. Williamson, R.A. et al. Circumventing tolerance to generate autologous monoclonal antibodies to the prion protein. Proc. Natl. Acad. Sci. USA 93, 7279–7282 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, Z., Prusiner, S.B. & Cohen, F.E. Scrapie prions: a three-dimensional model of an infectious fragment. Folding & Design 1, 13– 19 (1995).

    Article  CAS  Google Scholar 

  33. Meyer, N. et al. Search for a putative scrapie genome in purified prion fractions reveals a paucity of nucleic acids. J. Gen. Virol. 72, 37–49 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Kellings, K., Prusiner, S.B. & Riesner, D. Nucleic acids in prion preparations: unspecific background or essential component? Phil. Trans. R. Soc. Lond. B 343, 425–430 (1994).

    Article  CAS  Google Scholar 

  35. Kellings, K., Meyer, N., Mirenda, C., Prusiner, S.B. & Riesner, D. Further analysis of nucleic acids in purified scrapie prion preparations by improved return refocussing gel electrophoresis (RRGE). J. Gen. Virol. 73, 1025– 1029 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Prusiner, S.B. Prions. Les Prix Nobel (in the press).

  37. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  PubMed  Google Scholar 

  38. Kaneko, K. et al. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc. Natl. Acad. Sci. USA 94, 10069– 10074 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cohen, F.E. & Prusiner, S.B. Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793– 819 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Collinge, J., Sidle, K.C.L., Meads, J., Ironside, J. & Hill, A.F. Molecular analysis of prion strain variation and the aetiology of "new variant" CJD. Nature 383, 685–690 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Endo, T., Groth, D., Prusiner, S.B. & Kobata, A. Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 28, 8380– 8388 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Borchelt, D.R., Scott, M., Taraboulos, A., Stahl, N. & Prusiner, S.B. Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J. Cell Biol. 110, 743–752 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Caughey, B. & Raymond, G.J. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J. Biol. Chem. 266, 18217– 18223 (1991).

    CAS  PubMed  Google Scholar 

  44. Taraboulos, A. et al. Acquisition of protease resistance by prion proteins in scrapie-infected cells does not require asparagine-linked glycosylation. Proc. Natl. Acad. Sci. USA 87, 8262– 8266 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DeArmond, S.J. et al. Selective neuronal targeting in prion disease. Neuron 19, 1337–1348 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  46. Will, R.G. et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  47. Brown, P. in Transmissible Subacute Spongiform Encephalopathies: Prion Diseases (eds. Court, L. & Dodet, B.) 447–450 (Elsevier, Paris, 1996).

    Google Scholar 

  48. Prusiner, S.B. et al. Further purification and characterization of scrapie prions. Biochemistry 21, 6942– 6950 (1982).

    Article  CAS  PubMed  Google Scholar 

  49. Telling, G.C. et al. Transmission of Creutzfeldt-Jakob disease from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc. Natl. Acad. Sci. USA 91, 9936– 9940 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scott, M.R. et al. Identification of a prion protein epitope modulating transmission of bovine spongiform encephalopathy prions to transgenic mice. Proc. Natl. Acad. Sci. USA 94, 14279– 14284 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marsh, R.F. & Kimberlin, R.H. Comparison of scrapie and transmissible mink encephalopathy in hamsters. II. Clinical signs, pathology and pathogenesis. J. Infect. Dis. 131, 104– 110 (1975).

    Article  CAS  PubMed  Google Scholar 

  52. Kimberlin, R. & Walker, C. Characteristics of a short incubation model of scrapie in the golden hamster. J. Gen. Virol. 34, 295–304 (1977).

    Article  CAS  PubMed  Google Scholar 

  53. Gibbs, C.J., Jr., Safar, J., Sulima, M.P., Bacote, A.E. & San Martin, R.A. in Bovine Spongiform Encephalopathy: The BSE Dilemma (ed. Gibbs, C.J., Jr.) 84–91 (Springer, New York, 1996).

    Book  Google Scholar 

  54. Marsh, R.F., Bessen, R.A., Lehmann, S. & Hartsough, G.R. Epidemiological and experimental studies on a new incident of transmissible mink encephalopathy. J. Gen. Virol. 72, 589–594 (1991).

    Article  PubMed  Google Scholar 

  55. Dickinson, A.G. in Slow Virus Diseases of Animals and Man (ed. Kimberlin, R.H.) 209–241 (North-Holland Publishing, Amsterdam, 1976).

    Google Scholar 

  56. Kimberlin, R.H., Cole, S. & Walker, C.A. Pathogenesis of scrapie is faster when infection is intraspinal instead of intracerebral. Microb. Pathog. 2, 405–415 (1987).

    Article  CAS  PubMed  Google Scholar 

  57. Turk, E., Teplow, D.B., Hood, L.E. & Prusiner, S.B. Purification and properties of the cellular and scrapie hamster prion proteins. Eur. J. Biochem. 176, 21–30 (1988).

    Article  CAS  PubMed  Google Scholar 

  58. Safar, J., Roller, P.P., Gajdusek, D.C. & Gibbs, C.J., Jr. Scrapie amyloid (prion) protein has the conformational characteristics of an aggregated molten globule folding intermediate. Biochemistry 33, 8375–8383 ( 1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank H. Baron, F. Feldman and P. Fuhge for encouragement and discussions. This work was supported by grants from the National Institutes of Health (AG02132, AG10770, NS22786, and NS14069) as well as by gifts from the G. Harold and Leila Y. Mathers Foundation, Sherman Fairchild Foundation and Centeon.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safar, J., Wille, H., Itri, V. et al. Eight prion strains have PrPSc molecules with different conformations. Nat Med 4, 1157–1165 (1998). https://doi.org/10.1038/2654

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2654

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing