Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly 1+ B-cell lymphoma

Abstract

The early stages of murine B-cell differentiation are characterized by a series of immunoglobulin gene rearrangements which are required for the assembly of heavy(H)- and light(L)-chain variable regions from germline gene segments. Rearrangement at the heavy-chain locus is initiated first and consists of the joining of a diversity (DH) gene segment to a joining (JH) gene segment. This forms a DJH intermediate to which a variable (VH) gene segment is subsequently added. Light-cháin gene rearrangement follows and consists of the joining of a VL gene segment to a JL gene segment: once a productive light-chain gene has been formed the cell initiates synthesis of surface immunoglobulin M (slgM) receptors (reviewed in ref. 1). These receptors are clonally distributed and may undergo further diversification either by somatic mutation2,3 or possibly by continued recombinational events4. Such recombinational events have been detected in the Ly 1+ B-cell lymphoma NFS-5, which has been shown to rearrange both λ and H-chain genes subsequent to the formation of slgM (μκ) molecules5. Here we have analysed a rearrangement of the productive allele of NFS-5 and found that it is due to a novel recombination event between VH genes which results in the replacement of most or all of the coding sequence of the initial VHQ52 rearrangement by a germline VH7183 gene. Embedded in the VH coding sequence close to the site of the cross-over is the sequence 5′ TACTGTG 3′, which is identical to the signal heptamer found 5′ of many DH gene segments6. This embedded heptamer is conserved in over 70% of known VH genes7–17. We suggest that this heptamer mediates VH gene replacement and may play an important part in the development of the antibody repertoire.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yancopoulos, G. & Alt, F. W. A. Rev.Immun. 4, 339–368 (1986).

    Article  CAS  Google Scholar 

  2. Weigert, M., Cesari, I. M., Yonkovich, S. J. & Cohn, M. Nature 228, 1045–1047 (1970).

    Article  ADS  CAS  Google Scholar 

  3. McKean, D. et al. Proc. natn. Acad. Sci. U.S.A. 81, 3180–3184 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Dildrop, R., Brüggemann, M., Radbruch, A., Rajewski, R. & Beyreuther, K. EMBO J. 5, 635–640 (1982).

    Article  Google Scholar 

  5. Hardy, R. R. et al. Proc. natn. Acad. Sci. U.S.A. 83, 1438–1442 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Kurosawa, Y. & Tonegawa, S. J. exp. Med. 155, 201–218 (1982).

    Article  CAS  Google Scholar 

  7. Bothwell, A. L. et al. Cell 24, 625–637 (1981).

    Article  CAS  Google Scholar 

  8. Crews, S., Griffin, J., Huang, H., Calame, K. & Hood, L. Cell 25, 59–66 (1981).

    Article  CAS  Google Scholar 

  9. Givol, D. et al. Nature 292, 426–430 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Kaartinen, M., Griffiths, G. M., Martham, A. F. & Milstein C. Nature 304, 320–324 (1981).

    Article  ADS  Google Scholar 

  11. Loh, D. Y., Bothwell, A. L. M., White-Scharff, M. E., Imanishi-Kari, T. & Baltimore, D. Cell 33, 85–93 (1983).

    Article  CAS  Google Scholar 

  12. Near, R. I. et al. Proc. natn. Acad. Sci. U.S.A. 81, 2167–2171 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Sims, J. et al. Science 216, 309–311 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Kaartinen, M. et al. J. Immun. 130, 937–945 (1983).

    CAS  PubMed  Google Scholar 

  15. Yancopoulos, G. D. et al. Nature 311, 727–733 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. & Tonegawa, S. Nature 286, 676–683 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Early, P., Huang, H., Davis, M., Calame, K. & Hood, L. Cell 19, 981–992 (1980).

    Article  CAS  Google Scholar 

  18. Davidson, W. F. et al. J. Immun. 133, 744–753 (1984).

    CAS  PubMed  Google Scholar 

  19. Shlomchik, M. J. et al. J. exp. Med. (in the press).

  20. Seidman, J. G. & Leder, P. Nature 286, 779–783 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Early, P., Nottenburg, C., Weissman, I. & Hood, L. Molec. cell. Biol 2, 829–836 (1982).

    Article  CAS  Google Scholar 

  22. Kelley, D. E. et al. Molec. cell Biol. 5, 1660–1675 (1985).

    Article  CAS  Google Scholar 

  23. Durdik, J., Moore, M. W. & Selsing, E. Nature 307, 749–752 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Siminovitch, K. A., Bakhski, A., Goldman, P. & Korsmeyer, S. J. Nature 316, 260–262 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Perlmutter, R. M., Kearney, J. F., Chang, A. P. & Hood, L. E. Science 227, 1597–1600 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Dildrop, R., Krawinkel, V., Winter, E. & Rajewsky, K. Eur. J. Immun. 15, 1154–1156 (1985).

    Article  CAS  Google Scholar 

  27. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  28. Marcu, K. B., Banerji, J., Penncavage, N. A., Long, R. & Arnheim, N. Cell 22, 187–196 (1980).

    Article  CAS  Google Scholar 

  29. Brodeur, P., Riblet, R. Eur. J. Immun. 14, 922–930 (1984).

    Article  CAS  Google Scholar 

  30. Auffray, C. & Rougeau, F. Eur. J. Biochem. 107, 303–314 (1980).

    Article  CAS  Google Scholar 

  31. Thiele, C. J., Reynolds, C. P. & Israel, M. A. Nature 313, 404–406 (1985).

    Article  ADS  CAS  Google Scholar 

  32. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  33. Chirgwin, J., Przybyla, A., MacDonald, R. & Rutter, W. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  34. Rubin, C. & Schmid, C. Nucleic Acids Res. 8, 4613–4619 (1980).

    Article  CAS  Google Scholar 

  35. Bencini, D., O'Donovan, G. & Wild, J. Biotechniques 4 (January/February 1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinfield, R., Hardy, R., Tarlinton, D. et al. Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly 1+ B-cell lymphoma. Nature 322, 843–846 (1986). https://doi.org/10.1038/322843a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322843a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing