Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Analysis of multiexponential functions without a hypothesis as to the number of components

Abstract

The analysis of a curve as a sum of exponentials is one of the most common problems encountered in experimental 'curve-fitting' in such diverse areas as electrophysiology, chemical kinetics, electrical engineering and nuclear science. In this paper, a new method for the analysis of multicomponent exponential functions (either real and/or complex) is presented. This method is based upon the combined use of the Laplace transform and of Padé approximants. As compared with approximation procedures, it does not require an a priori hypothesis as to the number n of components, which is an output of the analysis1. It thus becomes possible, under realistic numerical conditions, to address the problem of unambiguous detection of the exponential components. Performance comparisons show that several practical limitations reported in previous works are overcome. Detailed derivations relevant to the fundamental basis of the method described here are presented in ref. 2 and further developments pertaining to numerical analysis aspects may be found in ref. 13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yeramian, E. Problème de l'indépendance ou du couplage fonctionnel des récepteurs d'acétylcholine—Mise au point d'une nouvelle méthode (transformation integrate, approximants de Padé) pour l' analyse des fonctions sommes d'exponentielles réelles ou complexes Rapport de stage (Ecole Centrale des Arts et Manufactures, Chatenay-Malabry, 1981).

  2. Claverie, P. & Denis, A. Computer Phys. Rep. (in the press).

  3. Gardner, D. G., Gardner, J. C., Lausch, G. & Meinke, W. W. J. chem. Phys. 31, 978–986 (1959).

    Article  ADS  CAS  Google Scholar 

  4. Smith, M. R., Cohn-Sfetcu, S. & Buckmaster, H. A. Technometrics 18, 467–482 (1976).

    Article  MathSciNet  Google Scholar 

  5. Provencher, S. W. J. chem. Phys. 64, 2772–2777 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Stockmann, H. J. Nucl. Instrum. Meth. 150, 273–281 (1978).

    Article  ADS  Google Scholar 

  7. Bellman, R., Kalaba, R. E. & Lockett, J. A. Numerical Inversion of the Laplace Transform: Applications to Biology, Economics, Engineering and Physics (Elsevier, New York, 1966).

    MATH  Google Scholar 

  8. Lanczos, C. Applied Analysis, 272–280 (Prentice-Hall, Englewood Cliffs, 1957).

  9. Baker, G. A. Jr Adv. theor. Phys. 1, 1–58 (1965).

    Google Scholar 

  10. Baker, G. A. Jr & Grave-Morris, P. R. Encyclopaedia of Mathematics and its Applications Vols 13, 14 (Addison-Wesley, Massachusetts, 1981).

    Google Scholar 

  11. Gilewicz, J. Approximants de Padé (Lecture notes in Mathematics No. 667) (Springer, Berlin, 1978).

    Book  Google Scholar 

  12. Prony, R. J. Ecole Polytechnique 1, 24–76 (1795).

    Google Scholar 

  13. Yeramian, E. thesis, Ecole Centrale des Arts et Manufactures, Chatenay-Malabry (1986).

  14. Aubard, J. Levoir, P., Denis, A. & Claverie, P. Computers Chem. (in the press).

  15. Chisholm, J. S. R. in Padé Approximants (ed. Graves-Morris, P. R.) 1–18 (The Institute of Physics, Bristol, 1973).

    Google Scholar 

  16. Baker, G. A. Jr J. Math. Anal. Appl. 43, 498–528 (1973).

    Article  MathSciNet  Google Scholar 

  17. Longman, I. M. Int. J. Computer Math. B3, 53–64 (1971).

    Article  Google Scholar 

  18. Stroud, A. H. & Secrest, D. Gaussian Quadrature Formulas (Prentice-Hall, Englewood Cliffs, New Jersey, 1966).

    MATH  Google Scholar 

  19. Filon, L. N. G. Proc. R. Soc. Edin. XLIX, 38–47 (1928–29).

    Google Scholar 

  20. Tranter, C. J. Integral Transforms in Mathematical Physics (Chapman and Hall, London, 1971).

    MATH  Google Scholar 

  21. Weiss, L. & McDonough, R. N. SIAM Rev. 5(2), 145–149 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  22. Fixman, M. & Juan, J. J. Biopolymers 16, 2693–2704 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeramian, E., Claverie, P. Analysis of multiexponential functions without a hypothesis as to the number of components. Nature 326, 169–174 (1987). https://doi.org/10.1038/326169a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326169a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing