Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting

Abstract

GROWTH factors are thought to function as pivotal autocrineparacrine regulatory signals during embryonic development1,2. Insulin-like growth factor II (IGF-II), a mitogenic polypeptide for a variety of cell lines3,4, could have such a role, as indicated by the pattern of expression of its gene during rodent development. The IGF-II gene 5–7 uses at least three promoters5,8,9 and expresses several transcripts in many tissues during the embryonic and neonatal periods5,10, whereas expression in adult animals is confined to the choroid plexus and the leptomeninges11. To examine the developmental role of IGF-II, we have begun to study the consequences of introducing mutations at the IGF-II gene locus in the mouse germ line. We have disrupted one of the IGF-II alleles in cultured mouse embryonic stem (ES) cells12–14 by gene targeting15–18 and constructed chimaeric animals. Germ-line transmission of the inactivated IGF-II gene from male chimaeras yielded heterozygous progeny that were smaller than their ES cell-derived wild-type littermates (about 60% of normal body weight). These growth-deficient animals were otherwise apparently normal and fertile. The effect of the mutation was exerted during the embryonic period. These results provide the first direct evidence for a physiological role of IGF-II in embryonic growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Milner, R. D. G. & Hill, D. J. Clin Endocrinol. 21, 415–433 (1984).

    Article  CAS  Google Scholar 

  2. Whitman, M. & Melton, D. A. A. Rev. Cell Biol. 5, 93–117 (1989).

    Article  CAS  Google Scholar 

  3. Zapf, J. & Froesch, E. R. Hormone Res. 24, 121–130 (1986).

    Article  CAS  Google Scholar 

  4. Daughaday, W. H. & Rotwein, P. Endocr. Rev. 10, 68–91 (1989).

    Article  CAS  Google Scholar 

  5. Soares, M. B. et al., J. molec. Biol. 192, 737–752 (1986).

    Article  CAS  Google Scholar 

  6. Sussenbach, J. S. Prog. Growth Factor Res. 1, 33–48 (1989).

    Article  CAS  Google Scholar 

  7. Gammeltoft, S. in Peptide Hormones as Prohormones (ed. Martinez, J.) 176–210 (Halsted, New York, 1989).

    Google Scholar 

  8. Evans, T., DeChiara, T. & Efstratiadis, A. J. molec. Biol. 199, 61–81 (1988).

    Article  CAS  Google Scholar 

  9. Ueno, T., Takahashi, K., Matsuguchi, T., Endo, H. & Yamamoto, M. Biochem. biophys. Res. Commun. 148, 344–349 (1987).

    Article  CAS  Google Scholar 

  10. Stylianopoulou, F., Efstratiadis, A., Herbert, J. & Pintar, J. Development 103, 497–506 (1988).

    CAS  PubMed  Google Scholar 

  11. Stylianopoulou, F., Herbert, J., Soares, M. B. & Efstratiadis, A. Proc. natn. Acad. Sci. U.S.A. 85, 141–145 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Evans, M. J. & Kaufman, M. H. Nature 292, 154–156 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Martin, G. Proc. natn. Acad. Sci. U.S.A. 78, 7634–7638 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Robertson, E. J. & Bradley, A. in Experimental Approaches to Mammalian Embryonic Development (eds Rossant, J. & Pedersen, R. A.) 475–508 (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  15. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. Nature 217, 230–234 (1985).

    Article  ADS  Google Scholar 

  16. Thomas, K. R. & Capecchi, M. R. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  17. Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Nature 336, 348–352 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Capecchi, M. Science 244, 1288–1292 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Doetschman, T., Maeda, N. & Smithies, O. Proc. natn. Acad. Sci. U.S.A. 85, 8583–8587 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Zimmer, A. & Gruss, P. Nature 338, 150–153 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Joyner, A. L., Skarnes, W. C. & Rossant, J. Nature 338, 153–156 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Johnson, R. S. et al. Science 245, 1234–1236 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Koller, B. H. & Smithies, O. Proc. natn. Acad. Sci. U.S.A. 86, 8932–8935 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Zijlstra, M., Li, E., Sajjadi, F., Subramani, S. & Jaenisch, R. Nature 342, 435–488 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Schwartzberg, P. L. Goff, S. P. & Robertson, E. J. Science 246, 799–803 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Nature 309, 255–256 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Robertson, E., Bradley, A., Kuehn, M. & Evans, M. Nature 323, 445–448 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Robertson, E. J. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E. J.) 71–112 (IRL, Oxford, 1987).

    Google Scholar 

  29. Marsh, J. L., Erfle, M. & Wykes, E. J. Gene 32, 481–485 (1984).

    Article  CAS  Google Scholar 

  30. Kim, H.-S. & Smithies, O. Nucleic Acids Res. 16, 8887–8903 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeChiara, T., Efstratiadis, A. & Robertsen, E. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80 (1990). https://doi.org/10.1038/345078a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345078a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing