Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic structure of single-stranded DNA bacteriophage ΦX174 and its functional implications

Abstract

The mechanism of DNA ejection, viral assembly and evolution are related to the structure of bacteriophage ΦX174. The F protein forms a T = 1 capsid whose major folding motif is the eight–stranded antiparallelβ barrel found in many other icosahedral viruses. Groups of 5 G proteins form 12 dominating spikes that enclose a hydrophilic channel containing some diffuse electron density. Each G protein is a tight β barrel with its strands running radially outwards and with a topology similar to that of the F protein. The 12 'pilot' H proteins per virion may be partially located in the putative ion channel. The small, basic J protein is associated with the DNA and is situated in an interior cleft of the F protein. Tentatively, there are three regions of partially ordered DNA structure, accounting for about 12% of the total genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hayashi, M., Aoyama, A., Richardson, D. L. Jr & Hayashi, M. N. in The Bactehophages (The Viruses) Vol. 2 (ed. Calendar, R.) 1–71 (Plenum, New York, 1988).

    Google Scholar 

  2. Burgess, A. B. Proc. natn. Acad. Sci. U.S.A. 64, 613–617 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Edgell, M. H., Hutchison, C. A. III & Sinsheimer, R. L. J. molec. Biol. 42, 547–557 (1969).

    Article  CAS  Google Scholar 

  4. Siden, E. J. & Hayashi, M. J. molec. Biol. 89, 1–16 (1974).

    Article  CAS  Google Scholar 

  5. Hall, C. E., Maclean, E. C. & Tessman, I. J. molec. Biol 1, 192–194 (1959).

    Article  Google Scholar 

  6. Thomas, W. J. & Horne, R. W. Virology 15, 1–7 (1961).

    Article  Google Scholar 

  7. Stouthamer, A. H., Daems, W. T. & Eigner, J. Virology 20, 246–250 (1963).

    Article  CAS  Google Scholar 

  8. Brown, D. T., Mackenzie, J. M. & Bayer, M. E. J. Virol. 7, 836–846 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Incardona, N. L. & Selvidge, L. J. Virol. 11, 775–782 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jazwinski, S. M., Lindberg, A. A. & Kornberg, A. Virology 66, 268–282 (1975).

    Article  CAS  Google Scholar 

  11. Feige, U. & Stirm, S. Biochem. biophys. Res. Commun. 71, 566–573 (1976).

    Article  CAS  Google Scholar 

  12. Sinsheimer, R. L. Prog. Nucleic Acid Res. molec. Biol. 8, 115–169 (1968).

    Article  CAS  Google Scholar 

  13. Newbold, J. E. & Sinsheimer, R. L. J. Virol. 5, 427–431 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Weisbeek, P. J., Van de Pol, J. H. & Van Arkel, G. A. Virology 52, 408–416 (1973).

    Article  CAS  Google Scholar 

  15. Dowell, C. E., Jansz, H. S. & Zandberg, J. Virology 114, 252–255 (1981).

    Article  CAS  Google Scholar 

  16. Newbold, J. E. & Sinsheimer, R. L. J. molec. Biol. 49, 49–66 (1970).

    Article  CAS  Google Scholar 

  17. Incardona, N. L. & Müller, U. R. J. molec. Biol. 181, 479–486 (1985).

    Article  CAS  Google Scholar 

  18. Doniger, J. & Tessman, I. Virology 39, 389–394 (1969).

    Article  CAS  Google Scholar 

  19. Incardona, N. L. J. Virol. 14, 469–478 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yazaki, K. J. virol. Meth. 2, 159–167 (1981).

    Article  CAS  Google Scholar 

  21. Mano, Y., Kawabe, T., Komano, T. & Yazaki, K. Agric. Biol. Chem. 46, 2041–2049 (1982).

    CAS  Google Scholar 

  22. Fujisawa, H. & Hayashi, M. J. Virol. 23, 439–442 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Aoyama, A., Hamatake, R. K. & Hayashi, M. Proc. natn. Acad. Sci. U.S.A. 78, 7285–7289 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Mukai, R., Hamatake, R. K. & Hayashi, M. Proc. natn. Acad. Sci. U.S.A. 76, 4877–4881 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Liljas, L. Prog. Biophys. molec. Biol. 48, 1–36 (1986).

    Article  CAS  Google Scholar 

  26. Sanger, F. et al. Nature 265, 687–695 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Shaw, D. C. et al. Nature 272, 510–515 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Godson, G. N. in The Single-Stranded DNA Phages (eds Denhardt, D. T., Dressler, D. & Ray, D. S.) 103–112 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1978).

    Google Scholar 

  29. Godson, G. N., Fiddes, J. C., Barrell, B. G. & Sanger, F. in The Single-Stranded DNA Phages (eds Denhardt, D. T., Dressier, D. & Ray, D. S.) 51–86 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1978)

    Google Scholar 

  30. Lau, P. C. K. & Spencer, J. H. Gene 40, 273–284 (1985).

    Article  CAS  Google Scholar 

  31. Huber, R. & Bennett, W. S. Jr Biopolymers 22, 261–279 (1983).

    Article  CAS  Google Scholar 

  32. Sinsheimer, R. L. J. molec. Biol. 1, 37–42 (1959).

    Article  CAS  Google Scholar 

  33. Willingmann, P. et al. J. molec. Biol. 212, 345–350 (1990).

    Article  CAS  Google Scholar 

  34. Eigner, J., Stouthamer, A. H., van der Sluys, I. & Cohen, J. A. J. molec. Biol 6, 61–84 (1963).

    Article  CAS  Google Scholar 

  35. Weisbeek, P. J., Van de Pol, J. H. & Van Arkel, G. A. Virology 48, 456–462 (1972).

    Article  CAS  Google Scholar 

  36. Sanger, F. et al. J. molec. Biol. 125, 225–246 (1978).

    Article  CAS  Google Scholar 

  37. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  38. Caspar, D. L. D. & Klug, A. Cold Spring Harb. Symp. quant. Biol. 27, 1–24 (1962).

    Article  CAS  Google Scholar 

  39. Rossmann, M. G. & Johnson, J. E. A. Rev. Biochem. 58, 533–573 (1989).

    Article  CAS  Google Scholar 

  40. Rossmann, M. G. et al. Nature 317, 145–153 (1985).

    Article  ADS  CAS  Google Scholar 

  41. Tsao, J. et al. Science 251, 1456–1464 (1991).

    Article  ADS  CAS  Google Scholar 

  42. Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. Nature 276, 368–373 (1978).

    Article  ADS  CAS  Google Scholar 

  43. Abad-Zapatero, C. et al. Nature 286, 33–39 (1980).

    Article  ADS  CAS  Google Scholar 

  44. Liljas, L. et al. J. molec. Biol. 159, 93–108 (1982).

    Article  CAS  Google Scholar 

  45. Cohen, S. S. & McCormick, F. P. Adv. Virus Res. 24, 331–387 (1979).

    Article  CAS  Google Scholar 

  46. Benevides, J. M., Stow, P. L., Ilag, L. L., Incardona, N. L. & Thomas, G. J. Jr Biochemistry 30, 4855–4863 (1991).

    Article  CAS  Google Scholar 

  47. Jazwinski, S. M., Marco, R. & Kornberg, A. Virology 66, 294–305 (1975).

    Article  CAS  Google Scholar 

  48. Chen, Z. et al. Science 245, 154–159 (1989).

    Article  ADS  CAS  Google Scholar 

  49. Saenger, W. in Principles of Nucleic Acid Structure (ed. Cantor, C. R.) 51–104 (Springer, New York, 1984).

    Google Scholar 

  50. Chapman, M. S., Minor, J., Rossmann, M. G., Diana, G. D. & Andries, K. J. molec. Biol. 217, 455–463 (1991).

    Article  CAS  Google Scholar 

  51. Argos, P. et al. Biochemistry 18, 5698–5703 (1979).

    Article  CAS  Google Scholar 

  52. Rossmann, M. G., Moras, D. & Olsen, K. W. Nature 250, 194–199 (1974).

    Article  ADS  CAS  Google Scholar 

  53. Matthews, B. W. & Rossmann, M. G. Meth. Enzym. 115, 397–420 (1985).

    Article  CAS  Google Scholar 

  54. Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R. & Klug, A. Nature 276, 362–368 (1978).

    Article  ADS  CAS  Google Scholar 

  55. Namba, K. & Stubbs, G. Science 231, 1401–1406 (1986).

    Article  ADS  CAS  Google Scholar 

  56. Valegård, K., Liljas, L., Fridborg, K. & Unge, T. Nature 345, 36–41 (1990).

    Article  ADS  Google Scholar 

  57. Choi, H. K. et al. Nature 354, 37–43 (1991).

    Article  ADS  CAS  Google Scholar 

  58. Ladenstein, R. et al. J. molec. Biol. 203, 1045–1070 (1988).

    Article  CAS  Google Scholar 

  59. Smith, T. J. et al. Science 233, 1286–1293 (1986).

    Article  ADS  CAS  Google Scholar 

  60. Rossmann, M. G. Proc. natn. Acad. Sci. U.S.A. 85, 4625–4627 (1988).

    Article  ADS  CAS  Google Scholar 

  61. Rossmann, M. G. & Blow, D. M. Acta crystallogr. 15, 24–31 (1962).

    Article  CAS  Google Scholar 

  62. Tong, L. & Rossmann, M. G. Acta crystallogr. A46, 783–792 (1990).

    Article  CAS  Google Scholar 

  63. Stauffacher, C. V. et al. in Crystallography in Molecular Biology (eds Moras, D., Drenth, J., Strandberg, B., Suck, D. & Wilson, K.) 293–308 (Plenum, New York, 1987).

    Book  Google Scholar 

  64. Rossmann, M. G. Acta crystallogr. A46, 73–82 (1990).

    Article  CAS  Google Scholar 

  65. Rossmann, M. G. et al. J. appl. Crystallogr. (in the press).

  66. Smith, T. J. J. appl. Crystallogr. 23, 141–142 (1990).

    Article  Google Scholar 

  67. Gibson, T. J. & Argos, P. J. molec. Biol. 212, 7–9 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenna, R., Xia, D., Willingmann, P. et al. Atomic structure of single-stranded DNA bacteriophage ΦX174 and its functional implications. Nature 355, 137–143 (1992). https://doi.org/10.1038/355137a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355137a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing