Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of in vivo substrates of the chaperonin GroEL

Abstract

The chaperonin GroEL has an essential role in mediating protein folding in the cytosol of Escherichia coli. Here we show that GroEL interacts strongly with a well-defined set of approximately 300 newly translated polypeptides, including essential components of the transcription/translation machinery and metabolic enzymes. About one third of these proteins are structurally unstable and repeatedly return to GroEL for conformational maintenance. GroEL substrates consist preferentially of two or more domains with αβ-folds, which contain α-helices and buried β-sheets with extensive hydrophobic surfaces. These proteins are expected to fold slowly and be prone to aggregation. The hydrophobic binding regions of GroEL may be well adapted to interact with the non-native states of αβ-domain proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2D-gel analysis of newly translated proteins that transit through GroEL.
Figure 2: Kinetics and extent of release from GroEL of newly translated proteins.
Figure 3: Pre-existing proteins that cycle on GroEL.
Figure 4: Identification of GroEL substrates by large-scale immunoprecipitation.
Figure 5: Structural classification of GroEL substrates.

Similar content being viewed by others

References

  1. Georgopoulos,C. & Welch,W. J. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9, 601–634 (1993).

    Article  CAS  Google Scholar 

  2. Ellis,R. J. Roles of molecular chaperones in protein folding. Curr. Opin. Struct. Biol. 4, 117–122 (1994).

    Article  CAS  Google Scholar 

  3. Hartl,F. U. Molecular chaperones in cellular protein folding. Nature 381, 571–580 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Fayet,O., Ziegelhoffer,T. & Georgopoulos,C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171, 1379–1385 (1989).

    Article  CAS  Google Scholar 

  5. Horwich,A. L., Low,K. B., Fenton,W. A., Hirshfield,I. N. & Furtak,K. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74, 909–917 (1993).

    Article  CAS  Google Scholar 

  6. Fenton,W. A., Kashi,Y., Furtak,K. & Horwich,A. L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Coyle,J. E., Jaeger,J., Gross,M., Robinson,C. V. & Radford,S. E. Structural and mechanistic consequences of polypeptide binding by GroEL. Fold. Design 2, R93–R104 (1997).

    Article  CAS  Google Scholar 

  8. Sigler,P. B. et al. Structure and function in GroEL-mediated protein folding. Annu., Rev. Biochem. 67, 581–608 (1998).

    Article  CAS  Google Scholar 

  9. Ranson,N. A., White,H. E. & Saibil,H. R. Chaperonins. Biochem. J. 333, 233–242 (1998).

    Article  CAS  Google Scholar 

  10. Ewalt,K. L., Hendrick,J. P., Houry,W. A. & Hartl,F. U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90, 491–500 (1997).

    Article  CAS  Google Scholar 

  11. Pedersen,S. Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 3, 2895–2898 (1984).

    Article  CAS  Google Scholar 

  12. Xu,D. & Nussinov,R. Favorable domain size in proteins. Fold. Design 3, 11–17 (1998).

    Article  CAS  Google Scholar 

  13. Xu,Z. H., Horwich,A. L. & Sigler,P. B. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Ellis,R. J. & Hartl,F. U. Protein folding in the cell: Competing models of chaperonin function. FASEB J. 10, 20–26 (1996).

    Article  CAS  Google Scholar 

  15. Rye,H. S. et al. GroEL–GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97, 325–338 (1999).

    Article  CAS  Google Scholar 

  16. Ellis,R. J. Molecular chaperones: avoiding the crowd. Curr. Biol. 7, R531–R533 (1997).

    Article  CAS  Google Scholar 

  17. Gentry,D. R. & Burgess,R. R. The cloning and sequence of the gene encoding the omega subunit of Escherichia coli RNA polymerase. Gene 48, 33–40 (1986).

    Article  CAS  Google Scholar 

  18. Wada,M., Fujita,H. & Itikawa,H. Genetic suppression of a temperature-sensitive groES mutation by an altered subunit of RNA polymerase of Escherichia coli K-12. J. Bacteriol. 169, 1102–1106 (1987).

    Article  CAS  Google Scholar 

  19. Ziemienowicz,A. et al. Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity. J. Biol. Chem. 268, 25425–25431 (1993).

    CAS  PubMed  Google Scholar 

  20. VanBogelen,R. A., Sankar,P., Clark,R. L., Bogan,J. A. & Neidhardt,F. C. The gene–protein database of Escherichia coli: edition 5. Electrophoresis 13, 1014–1054 (1992).

    Article  CAS  Google Scholar 

  21. Hubbard,T. J. P., Ailey,B., Brenner,S. E., Murzin,A. G. & Chothia,C. SCOP: a structural classification of proteins database. Nucleic Acids Res. 27, 254–256 (1999).

    Article  CAS  Google Scholar 

  22. Orengo,C. A. et al. The CATH database provides insights into protein structure/function relationships. Nucleic Acids Res. 27, 275–279 (1999).

    Article  CAS  Google Scholar 

  23. Eisenberg,D., Wilcox,W. & McLachlan,A. D. Hydrophobicity and amphiphilicity in protein structure. J. Cell. Biochem. 31, 11–17 (1986).

    Article  CAS  Google Scholar 

  24. Cheng,M. Y. et al. Mitochondrial heat-shock protien hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620–625 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Rye,H. S. et al. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792–798 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Viitanen,P. V. et al. Chaperonin-facilitated refolding of the ribulsebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (GroEL) are K+ dependent. Biochemistry 29, 5665–5671 (1990).

    Article  CAS  Google Scholar 

  27. Plaxco,K. W., Simons,K. T. & Baker,D. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994 (1998).

    Article  CAS  Google Scholar 

  28. Schlunegger,M. P., Bennett,M. J. & Eisenberg,D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv. Protein Chem. 50, 61–122 (1997).

    Article  CAS  Google Scholar 

  29. Landry,S. J., Jordan,R., McMacken,R. & Gierasch,L. M. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature 355, 455–457 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Laminet,A. A., Ziegelhoffer,T., Georgopoulos,C. & Pluckthun,A. The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta-lactamase precursor. EMBO J. 9, 2315–2319 (1990).

    Article  CAS  Google Scholar 

  31. Vitanen,P. V., Donaldson,G. K., Lorimer,G. H., Lubben,T. H. & Gatenby,A. A. Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry 30, 9716–9723 (1991).

    Article  Google Scholar 

  32. Smith,K. E., Voziyan,P. A. & Fisher,M. T. Partitioning of rhodanese onto GroEL–chaperonin binds a reversibly oxidized form derived from the native protein. J. Biol. Chem. 273, 28677–28681 (1998).

    Article  CAS  Google Scholar 

  33. Hayer-Hartl,M. K., Weber,F. & Hartl,F. U. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. EMBO J. 15, 6111–6121 (1996).

    Article  CAS  Google Scholar 

  34. Bjellqvist,B., Pasquali,C., Ravier,F., Sanchez,J. C. & Hochstrasser,D. A nonlinear wide-range immobilized pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale. Electrophoresis 14, 1357–1365 (1993).

    Article  CAS  Google Scholar 

  35. Gorg,A., Postel,W. & Gunther,S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9, 531–546 (1988).

    Article  CAS  Google Scholar 

  36. Fountoulakis,M. & Langen,H. Identification of proteins by matrix-assisted laser desorption ionization-mass spectrometry following in-gel digestion in low-salt, nonvolatile buffer and simplified peptide recovery. Anal. Biochem. 250, 153–156 (1997).

    Article  CAS  Google Scholar 

  37. Altschul,S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  38. Wootton,J. & Federhen,S. Statistics of local complexity in amino acid sequences and sequence databases. Comput. Chem. 17, 149–163 (1993).

    Article  CAS  Google Scholar 

  39. Labedan,B. & Riley,M. Gene products of Escherichia coli: sequence comparisons and common ancestries. Mol. Biol. Evol. 12, 980–987 (1995).

    CAS  PubMed  Google Scholar 

  40. Klein,P., Kanehisa,M. & DeLisi,C. The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta 815, 468–476 (1985).

    Article  CAS  Google Scholar 

  41. Frishman,D. & Argos,P. Seventy-five percent accuracy in protein secondary structure prediction. Proteins 27, 329–335 (1997).

    Article  CAS  Google Scholar 

  42. Nakashima,H., Nishikawa,K. & Ooi,T. The folding type of a protein is relevant to the amino acid composition. J. Biochem. 99, 153–162 (1986).

    Article  CAS  Google Scholar 

  43. Huynen,M. et al. Homology-based fold predictions for Mycoplasma genitalium proteins. J. Mol. Biol. 280, 323–326 (1998).

    Article  CAS  Google Scholar 

  44. Frishman,D. & Mewes,H. W. Pedantic genome analysis. Trends Genet. 13, 415–416 (1997).

    Article  CAS  Google Scholar 

  45. Bairoch,A. & Apweiler,R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic Acids Res. 26, 38–42 (1998).

    Article  CAS  Google Scholar 

  46. Karp,P. D., Riley,M., Paley,S. M., Pellegrini-Toole,A. & Krummenacker,M. EcoCyc: Encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res. 26, 50–53 (1998).

    Article  CAS  Google Scholar 

  47. Meyer,S. L. Data Analysis for Scientists and Engineers. (Wiley, New York, 1975).

  48. Zhang,G. & Darst,S. A. Structure of the Escherichia coli RNA polymerase alpha subunit amino terminal domain. Science 281, 262–266 (1998).

    Article  ADS  CAS  Google Scholar 

  49. Nicholls,A., Sharp,K. A. & Honig,B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Andersson for technical assistance and M. C. Bewley for help with Fig. 5b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ulrich Hartl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houry, W., Frishman, D., Eckerskorn, C. et al. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147–154 (1999). https://doi.org/10.1038/45977

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45977

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing