Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A functional screen in yeast for regulators and antagonizers of heterologous protein tyrosine kinases

Abstract

Tyrosine phosphorylation exerts a pivotal role in cell regulation processes of higher eukaryotes. Tight control of the activity of protein tyrosine kinases is crucial for ordered phosphorylation to occur. We have developed a functional screen for tyrosine kinase regulators using c-Src, the first cellular protein tyrosine kinase described, as a prototype; and fission yeast, Schizosaccharomyces pombe, as a genetically amenable host system. Inducible expression of c-Src in fission yeast is lethal. We have screened human cDNA libraries for clones able to counteract the lethal effect of Src. Two different classes of cDNAs, which we called SAS for sequences antagonizing Src, were obtained. The first class encodes for the protein tyrosine kinase Csk, known to regulate Src activity through phosphorylation of the C-terminal tyrosine. The second class consists of clones encoding three different tyrosine phosphatases, counteracting Src action by dephosphorylation of Src substrates and by dephosphorylation of Src itself. The system described here can be applied to identify regulators of other heterologous tyrosine kinases, including receptor-type tyrosine kinases, which impair growth of S. pombe.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levitzki, A. and Gazit, A. 1995. Tyrosine kinase inhibition: an approach to drug development. Science 267: 1782–1788.

    Article  CAS  Google Scholar 

  2. Hunter, T. and Cooper, J.A. 1985. Protein-tyrosine kinases. Ann. Rev. Biochem. 54: 897–930.

    Article  CAS  Google Scholar 

  3. Hanks, S.J., Quinn, A.M., and Hunter, T. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.

    Article  CAS  Google Scholar 

  4. Courtneidge, S.A. 1994. Protein tyrosine kinases, with emphasis on the Src family. Sem. in Cancer Biol. 5: 239–246.

    CAS  Google Scholar 

  5. Bolen, J.B. 1993. Nonreceptor tyrosine protein kinases. Oncogene 8: 2025–2031.

    CAS  Google Scholar 

  6. Ullrich, A. and Schlessinger 1990. Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212.

    Article  CAS  Google Scholar 

  7. Fantl, W.J., Johnson, D.E., and Williams, L.T. 1993. Signalling by receptor tyrosine kinases. Annu. Rev. Biochem. 62: 453–481.

    Article  CAS  Google Scholar 

  8. van der Geer, P., Hunter, T., and Lindberg, R.A. 1994. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10: 251–337.

    Article  CAS  Google Scholar 

  9. Erpel, T. and Courtneidge, S.A. 1995. Src family protein kinases and cellular signal transduction pathways. Curr. Biology 7: 176–182.

    Article  CAS  Google Scholar 

  10. Superti-Furga, G. and Courtneidge, S.A. 1995. Structure-function relationships in Src family and related protein tyrosine kinases. Bioessays 17: 321–330.

    Article  CAS  Google Scholar 

  11. Cooper, J.A. and Howell, B. 1993. The when and how of Src regulation. Cell 73: 1051–1054.

    Article  CAS  Google Scholar 

  12. Superti-Furga, G. 1995. Regulation of the Src protein tyrosine kinase. FEBS Letters 369: 62–66.

    Article  CAS  Google Scholar 

  13. Fields, S. and Song, O. 1989. A novel genetic system to detect protein-protein interactions. Nature 340: 245–246.

    Article  CAS  Google Scholar 

  14. Ren, R., Ye, Z.-S., and Baltimore, D. 1994. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes & Dev. 8: 783–795.

    Article  CAS  Google Scholar 

  15. Dai, Z. and Pendergast, A.M. 1995. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes & Dev. 9: 2596–2582.

    Article  Google Scholar 

  16. Shi, Y., Ålin, K., and Goff, S.R., 1995. Abl, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes & Dev. 9: 2583–2597.

    Article  CAS  Google Scholar 

  17. Osborne, M.A., Dalton, S., and Kochan, J.R. 1995. The yeast tribrid system: genetic detection of trans-phosphorylated ITAM-SH2-interactions. Bio/Technology 13: 1474–1478.

    CAS  PubMed  Google Scholar 

  18. Kinoshita, N., Minshull, J., and Kirschner, M.W. 1995. The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development. Cell 83: 621–630.

    Article  CAS  Google Scholar 

  19. Superti-Furga, G., Fumagalli, S., Koegl, M., Courtneidge, S.A., and Draetta, G. 1993. Csk inhibition of Src activity requires both the SH2 and SH3 domains of Src. EMBO J. 12: 2625–2634.

    Article  CAS  Google Scholar 

  20. Russell, P.R. and Hall, B.D. 1983. The primary structure of the aJcohol dehydrogenase gene from the fission yeast Schizosaccharomyces pombe . J. Biol. Chem. 258: 143–149.

    CAS  Google Scholar 

  21. Maundrell, K. 1990. nmtl of fission yeast. A highly transcribed gene completely repressed by thiamine. J. Biol. Chem. 265: 10857–10864.

    Google Scholar 

  22. Tommasino, M. and Maundrell, K. 1991. Uptake of thiamine by Schizosaccharomyces pombe and its effects as a transcriptional regulator of thiamine sensitive genes. Curr. Genet. 20: 63–66.

    Article  CAS  Google Scholar 

  23. Nada, S., Okada, M., MacAuley, A., Cooper, J.A., and Nakagawa, H. 1991. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-Src . Nature 351: 69–72.

    Article  CAS  Google Scholar 

  24. Partanen, J., Armstrong, E., Bergman, M., Mäkelä, T.P., Hirvonen, H., Huebner, K. et al. 1991. Cyl encodes a putative cytoplasmic tyrosine kinase lacking the conserved tyrosine autophosphorylation site (Y416src). Oncogene 6: 2013–2018.

    CAS  Google Scholar 

  25. Koegl, M., Courtneidge, S.A., and Superti-Furga, G. 1995. Structural requirements for the efficient regulation of the Src protein tyrosine kinase by Csk. Oncogene 11: 2317–2329.

    CAS  PubMed  Google Scholar 

  26. den Hertog, J., Pals, C.E.G.M., Jonk, L.J.C., and Kruijer, W. 1992. Differential expression of a novel murine nonreceptor protein tyrosine phosphatase dunng differentiation of p19 embryonal carcinoma cells. Biochem. Biophys. Res. Comm. 184: 1241–1249.

    Article  CAS  Google Scholar 

  27. Takekawa, M., Itoh, F., Hinoda, Y., Arimura, Y., Totota, M., Sekiya, M. et al. 1992. Cloning and characterization of a human cDNA encoding a novel putative cytoplasmic protein tyrosine phosphatase. Biochem. Biophys. Res. Comm. 189: 1223–1230.

    Article  CAS  Google Scholar 

  28. Yang, Q., Co, D., Sommercorn, J., and Tonks, N.K. 1993. Cloning and expression of PTP-PEST. J. Biol. Chem. 268: 6622–6628.

    CAS  PubMed  Google Scholar 

  29. Maekawa, K., Imagawa, N., Nagamatsu, M., and Harada, S. 1994. Molecular cloning of a novel protein-tyrosine phosphatase containing a membrane-binding domain and GLGF repeats. FEBS Letters 337: 200–206.

    Article  CAS  Google Scholar 

  30. Saras, J., Claesson-Welsh, L., Heldin, C.-H., and Gonez, L.J. 1994. Cloning and characterization of PTPL1, a protein tyrosine phosphatase with similarities to cytoskeletal-associated proteins. J. Biol. Chem. 269: 24082–24089.

    CAS  PubMed  Google Scholar 

  31. Banville, D., Ahmad, S., Stocco, R., and Shen, S.H. 1994. A novel protein-tyrosine phosphatase with homology to both the cytoskeletal proteins of the band 4.1 family and junction-associated guanylate kinases. J. Biol. Chem. 269: 22320–22327.

    CAS  PubMed  Google Scholar 

  32. Brugge, J.S., Jarosik, G., Andersen, J., Queral-Lustig, A., Fedor-Chaiken, M., and Broach, J.R. 1987. Expression of Rous sarcoma virus transforming protein pp60v-src in Saccharomyces cerevisiae cells. Mol. Cell. Biol. 7: 2180–2187.

    Article  CAS  Google Scholar 

  33. Kornbluth, S., Jove, R., and Hanafusa, H. 1987. Characterization of avian and viral p60src proteins expressed in yeast. Proc. Natl. Acad. Sci. USA 84: 4455–4459.

    Article  CAS  Google Scholar 

  34. Murphy, S.M., Bergman, M., and Morgan, D.O. 1993. Suppression of c-Src activity by C-terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae . Mol. Cell. Biol. 13: 5290–5300.

    Article  CAS  Google Scholar 

  35. Basi, G., Schmid, E., and Maundrell, K. 1993. TATA box mutations in the SchSchizosaccharomyces pombe nmtl promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123: 131–136.

    Article  CAS  Google Scholar 

  36. Forsburg, S.L. 1993. Comparison of Schizosaccharomyces pombeexpression systems. Nucleic Acids Res. 21: 2955–2956.

    Article  CAS  Google Scholar 

  37. Cool, D.E., Tonks, N.A., Charbonneau, H., Walsh, K.A., Fischer, R.H., and Krebs, E.G. 1989. cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphate family. Proc. Natl. Acad. Sci. USA 86: 5257–5261.

    Article  CAS  Google Scholar 

  38. Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., and Nakagawa, H. 1991. CSK: a protein-tyrosine kinase involved in regulation of src family kinases. J. Biol. Chem. 266: 24249–24252.

    CAS  PubMed  Google Scholar 

  39. Yi, T., Cleveland, J.L., and Ihle, J.N. 1991. Identification of novel tyrosine phosphatases of hematopoietic cells by polymerase chain reaction amplification. Blood 78: 2222–2228.

    CAS  PubMed  Google Scholar 

  40. Florio, M., Wilson, L.K., Trager, J.B., Thorner, J., and Martin, G.S. 1994 Aberrant protein phosphorylation at tyrosine is responsible for the growth-inhibitory action of pp60 v-src expressed in the yeast Saccharomyces cerevisiae . Molec. Biol. Cell. 5: 283–296.

    Article  CAS  Google Scholar 

  41. Walkenhorst, J., Goga, A., Witte, O.N., and Superti-Furga, G. 1996. Analysis of human c-Abl tyrosine kinase activity and regulation in S.pombe . Oncogene. In press.

  42. Okada, M. and Nakagawa, H. 1988. Protein tyrosine kinases in rat brain: neonatal rat brain expresses two types of pp60c-src and a novel protein tyrosine kinase. J. Biochem. 104: 297–305.

    Article  CAS  Google Scholar 

  43. MacAuley, A., Okada, M., Nada, S., Nakagawa, H., and Cooper, J.A. 1993. Phosphorylation of Src mutants at Tyr 527 in fibroblasts does not correlate with in vitro phosphorylation by CSK. Oncogene 8: 117–124.

    CAS  PubMed  Google Scholar 

  44. Maundrell, K. 1993. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123: 127–130.

    Article  CAS  Google Scholar 

  45. Seed, B. 1987. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature 329: 840–842.

    Article  CAS  Google Scholar 

  46. Gubler, U. and Hoffrnann, B.J. 1983. A simple and very efficient method for generating cDNA libranes. Gene 25: 263–269.

    Article  CAS  Google Scholar 

  47. Adams, B., Dörfler, P., Aguzzi, A., Kozmik, Z., Urbanek, P., Maurer-Fogy, I. et al. 1992. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes & Dev. 6: 1589–1607.

    Article  CAS  Google Scholar 

  48. Moreno, S., Klar, A., and Nurse, P. 1991. Molecular Genetic Analysis of Fission Yeast Schizosaccharomyces pombe . pp. 795–826 in Guide to Yeast Genetics and Molecular Biology, vol. 194. Guthrie, C. and Fink, G. (eds.).

    Chapter  Google Scholar 

  49. Kypta, R.M., Goldberg, Y., Ulug, E.T., and Courtneidge, S.A. 1990. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 62: 481–492.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Superti-Furga, G., Jönsson, K. & Courtneidge, S. A functional screen in yeast for regulators and antagonizers of heterologous protein tyrosine kinases. Nat Biotechnol 14, 600–605 (1996). https://doi.org/10.1038/nbt0596-600

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0596-600

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing