Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Cloning differentially expressed mRNAs

Abstract

Differential gene expression occurs in the process of development, maintenance, injury, and death of unicellular as well as complex organisms. Differentially expressed genes are usually identified by comparing steady-state mRNA concentrations. Electronic subtraction (ES), subtractive hybridization (SH), and differential display (DD) are methods commonly used for this purpose. A rigorous examination has been lacking and therefore quantitative aspects of these methods remain speculative. We compare these methods by identifying a total of 58 unique differentially expressed mRNAs within the same experimental system (HeLa cells treated with interferon-γ). ES yields digital, reusable data that quantitated steady-state mRNA concentrations but only identified abundant mRNAs (seven were identified), which represent a small fraction of the total number of differentially expressed mRNAs. SH and DD identified abundant and rare mRNAs (33 and 23 unique mRNAs respectively) with redundancy. The redundancy is mRNA abundance-dependent for SH and primer-dependent for DD. We conclude that DD is the method of choice because it identifies mRNAs independent of prevalence, uses small amounts of RNA, identifies increases and decreases of mRNA steady-state levels simultaneously, and has rapid output.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Loros, J.J., Denome, S.A. and Dunlap, J.C. 1989. Molecular cloning of genes under control of the clrcadlan clock In Neurospora. Science 243: 385–388.

    Article  CAS  Google Scholar 

  2. Wilkinson, J.Q., Lanahan, M.B., Conner, T.W. and Klee, H.J. 1995. Identification of mRNAs with enhanced expression in ripening strawberry fruit using polymerase chain reaction differential display. Plant. Mol. Biol. 27: 1097–1108.

    Article  CAS  Google Scholar 

  3. Smith, D.P., Shieh, B.H. and Zuker, C.S. 1990. Isolation and structure of an arrestin gene from Drosophila . Proc. Natl. Acad. Sci. USA 87: 1003–1007.

    Article  CAS  Google Scholar 

  4. Qu, D. et al. 1996. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380: 243–247.

    Article  CAS  Google Scholar 

  5. Douglass, J., McKinzie, A.A. and Couceyro, P. 1995. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neuroscience 15: 2471–2481.

    Article  CAS  Google Scholar 

  6. Wang, X. et al. 1995. Discovery of adrenomedullin in rat ischemic cortex and evidence for its role in exacerbating focal brain ischemic damage. Proc. Natl. Acad. Sci. USA 92: 11480–11484.

    Article  CAS  Google Scholar 

  7. el-Deiry, W.S. et al. 1993. WAFI, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  Google Scholar 

  8. Woronicz, J.D., Calnan, B., Ngo, V. and Winoto, A. 1994. Requirement for the orphan steroid receptor Nur77 in apoptosis of T- cell hybridomas. Nature 367: 277–281.

    Article  CAS  Google Scholar 

  9. Travis, G.H., Milner, R.J. and Sutcliffe, J.G. 1989. pp. 49–78 in Neuromethods vol. 16: molecular neurobiological techniques. Boulton, A.A., Baker, G.B., and Campagnoni, AT. (eds.) The Humana Press, Clifton, NJ.

    Book  Google Scholar 

  10. Watson, J.B. and Margulies, J.E. 1993. Differential cDNA screening strategies to identify novel stage-specific proteins in the developing mammalian brain. Developmental Neuroscience 15: 77–86.

    Article  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  12. Adams, M.D., Scares, M.B., Kerlavage, A.R., Fields, C. and Venter, J.C. 1993. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nature Genetics 4: 373–380.

    Article  CAS  Google Scholar 

  13. Franco, G.R. et al. 1995. Identification of new Schistosoma mansoni genes by the EST strategy using a directional cDNA library. Gene 152: 141–147.

    Article  CAS  Google Scholar 

  14. Itoh, K., Matsubara, K. and Okubo, K. 1994. Identification of an active gene by using large-scale cDNA sequencing. Gene 140: 295–296.

    Article  CAS  Google Scholar 

  15. Murakawa, K., Matsubara, K., Fukushima, A., Yoshii, J. and Okubo, K. 1994. Chromosomal assignments of 3′-directed partial cDNA sequences representing novel genes expressed in granulocytoid cells. Genomics 23: 379–389.

    Article  CAS  Google Scholar 

  16. Okubo, K. et al. 1992. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nature Genetics 2: 173–179.

    Article  CAS  Google Scholar 

  17. Velculescu, V.E., Zhang, L., Vogelstein, B. and Kinzler, K.W. 1995. Serial analysis of gene expression. Science 270: 484–487.

    Article  CAS  Google Scholar 

  18. Liang, P. and Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.

    Article  CAS  Google Scholar 

  19. Welsh, J. et al. 1992. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 20: 4965–4970.

    Article  CAS  Google Scholar 

  20. Livesey, F.J. and Hunt, S.P. 1996. Identifying changes in gene expression in the nervous system: mRNA differential display. Trends Neurosci. 19: 84–88.

    Article  CAS  Google Scholar 

  21. Axel, R., Feigelson, P. and Schutz, G. 1976. Analysis of the complexity and diversity of mRNA from chicken liver and oviduct. Cell 7: 247–254.

    Article  CAS  Google Scholar 

  22. Bishop, J.O., Morion, J.G., Rosbash, M. and Richardson, M. 1974. Three abundance classes in HeLa cell messenger RNA. Nature 250: 199–204.

    Article  CAS  Google Scholar 

  23. Pestka, S., Langer, J.A., Zoon, K.C. and Samuel, C.E. 1987. Interferons and their actions. Annu. Rev. Biochem. 56: 727–777.

    Article  CAS  Google Scholar 

  24. Sen, G.C. 1991. pp. 349–374 in The hormonal control regulation of gene transcription. Cohen, P. and Foulkes, J.G. (eds.). Elsevier Science Publishers, New York.

    Book  Google Scholar 

  25. Revel, M. and Chebath, J. 1986. Interferon-activated genes. TIBS 11: 166–170.

    CAS  Google Scholar 

  26. Adams, M.D. et al. 1992. Sequence identification of 2,375 human brain genes. Nature 355: 632–634.

    Article  CAS  Google Scholar 

  27. Adams, M.D., Kerlavage, A.R., Fields, C. and Venter, J.C. 1993. 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nature Genetics 4: 256–267.

    Article  CAS  Google Scholar 

  28. Adams, M.D. et al. 1995. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377: 3–174.

    CAS  Google Scholar 

  29. Sanders, J., Maassen, J.A., Amons, R. and Moller, W. 1991. Nucleotide sequence of human elongation factor-1 beta cDNA. Nucleic Acids Res. 19: 4551.

    Article  CAS  Google Scholar 

  30. Fields, C. and Adams, M.D. 1994. Expressed sequence tags identify a human isolog of the suil translation initiation factor. Biochem. Biophys. Res. Common. 198: 288–291.

    Article  CAS  Google Scholar 

  31. Yang, Y., Fruh, K., Ahn, K. and Peterson, P.A. 1995. In vivo assembly of the proteasomal complexes, implications for antigen processing. J. Biol. Chem. 270: 27687–27694.

    Article  CAS  Google Scholar 

  32. Strehlow, I. et al. 1993. The gene encoding IFP 53/tryptophanyl-tRNA syn-thetase is regulated by the gamma-interferon activation factor. J. Biol. Chem. 268: 16590–16595.

    CAS  PubMed  Google Scholar 

  33. Borjigin, J., Wang, M.M. and Snyder, S.H. 1995. Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland. Nature 378: 783–785.

    Article  CAS  Google Scholar 

  34. Travis, G.H., Brennan, M.B., Danielson, P.E., Kozak, C.A. and Sutcliffe, J.G. 1989. Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Nature 338: 70–73.

    Article  CAS  Google Scholar 

  35. Wu, G., Su, S. and Bird, R.C. 1994. Optimization of subtractive hybridization in construction of subtractive cDNA libraries. Genetic Analysis, Techniques & Applications 11: 29–33.

    Article  CAS  Google Scholar 

  36. Rothstein, J.L. et al. 1993. Construction of primary and subtracted cDNA libraries from early embryos. Methods Enzymol. 225: 587–610.

    Article  CAS  Google Scholar 

  37. Rubenstein, J.L. et al. 1990. Subtractive hybridization system using single-stranded phagemids with directional inserts. Nucleic Acids Res. 18: 4833–4842.

    Article  CAS  Google Scholar 

  38. Sive, H.L. and St, J.T. 1988. A simple subtractive hybridization technique employing photoactivatable biotin and phenol extraction. Nucleic Acids Res. 16: 10937.

    Article  CAS  Google Scholar 

  39. Usui, H. et al. 1994. Isolation of clones of rat striatum-specific mRNAs by directional tag PCR subtraction. J. Neurosci. 14: 4915–4926.

    Article  CAS  Google Scholar 

  40. Rahmsdorf, H.J. et al. 1986. Interferon-gamma, mitomycin C, and cycloheximide as regulatory agents of MHC class II-associated invariant chain expression. J. Immunol. 136: 2293–2299.

    CAS  PubMed  Google Scholar 

  41. Rasmussen, U.B. et al. 1993. Identification of a new interferon-alpha-inducible gene (p27) on human chromosome 14q32 and its expression in breast carcinoma. Cancer Res. 53: 4096–4101.

    CAS  PubMed  Google Scholar 

  42. Gaczynska, M., Rock, K.L. and Goldberg, A.L. 1993. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365: 264–267.

    Article  CAS  Google Scholar 

  43. Flodstrom, M., Niemann, A., Bedoya, F.J., Morris, S.M., Jr., and Eizirik, D.L. 1995. Expression of the citrulline-nitric oxide cycle in rodent and human pancreatic beta-cells: induction of argininosuccinate synthetase by cytokines. Endocrinology 136: 3200–3206.

    Article  CAS  Google Scholar 

  44. Volanakis, J.E. 1995. Transcriptional regulation of complement genes. Ann Rev. Immunol. 13: 277–305.

    Article  CAS  Google Scholar 

  45. Liang, P., Averboukh, L. and Pardee, A.B. 1993. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 21: 3269–3275.

    Article  CAS  Google Scholar 

  46. Liang, P. et al. 1994. Differential display using one-base anchored oligo-dT primers. Nucleic Acids Res. 22: 5763–5764.

    Article  CAS  Google Scholar 

  47. Liang, P. and Pardee, A.B. 1995. Recent advances in differential display. Current Opinion in Immunology 7: 274–280.

    Article  CAS  Google Scholar 

  48. Zhao, S., Ooi, S.L. and Pardee, A.B. 1995. New primer strategy improves precision of differential display. Biotechniques 18: 842–846, 848, 850.

    CAS  PubMed  Google Scholar 

  49. Bauer, D. et al. 1993. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res. 21: 4272–4280.

    Article  CAS  Google Scholar 

  50. Aiello, L.P., Robinson, G.S., Lin, Y.W., Nishio, Y. and King, G.L. 1994. Identification of multiple genes in bovine retinal pericytes altered by exposure to elevated levels of glucose by using mRNA differential display. Proc. Natl. Acad. Sci. USA 91: 6231–6235.

    Article  CAS  Google Scholar 

  51. Debouck, C. 1995. Differential display or differential dismay? Current Opinion in Biotechnology 6: 597–599.

    Article  CAS  Google Scholar 

  52. Gasque, P. et al. 1993. Expression of the complement classical pathway by human glloma in culture. A model for complement expression by nerve cells. J. Biol, Chem. 268: 25068–25074.

    CAS  Google Scholar 

  53. Holland, C.A., Mayrand, S. and Pederson, T. 1980. Sequence complexity of nuclear and messenger RNA in HeLa cells. J. Mol. Biol. 138: 755–778.

    Article  CAS  Google Scholar 

  54. Britten, R.J. and Davidson, E.H. 1985. pp. 3–15 in Nucleic acid hybridisation a practical approach. Hames, B.D. and Higgins, S.J. (eds.). Oxford University Press, Oxford, UK.

    Google Scholar 

  55. Bertioli, D.J. et al. 1995. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res. 23: 4520–4523.

    Article  CAS  Google Scholar 

  56. Van Gelder, R.N. et al. 1990. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87: 1663–1667.

    Article  CAS  Google Scholar 

  57. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.

    Article  CAS  Google Scholar 

  58. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Article  CAS  Google Scholar 

  59. Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, J., Sharp, S., Poirier, GC. et al. Cloning differentially expressed mRNAs. Nat Biotechnol 14, 1685–1691 (1996). https://doi.org/10.1038/nbt1296-1685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1296-1685

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing