Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers

Abstract

Chromosome deletions are the most common genetic events observed in cancer1–4. These deletions are generally thought to reflect the existence of a tumour suppressor gene within the lost region5. However, when the lost region does not precisely coincide with a hereditary cancer locus, identification of the putative tumour suppressor gene (target of the deletion) can be problematic. For example, previous studies have demonstrated that chromosome 18q is lost in over 60% of colorectal as well as in other cancers, but the lost region could not be precisely determined6–8. Here we present a rigorous strategy for mapping and evaluating allelic deletions in sporadic tumours, and apply it to the evaluation of chromosome 18 in colorectal cancers. Using this approach, we define a minimally lost region (MLR) on chromosome 18q21, which contains at least two candidate tumour suppressor genes, DPC4 and DCC. The analysis further suggested genetic heterogeneity, with DPC4 the deletion target in up to a third of the cases and DCC or a neighbouring gene the target in the remaining tumours.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mitelman, F. in Catalog of chromosome aberrations in cancer (Wiley-Liss, 1991).

    Google Scholar 

  2. Sandberg, A.A. & Chen, Z. Cancer cytogenetics and molecular genetics: detection and therapeutic strategy. In Vivo 8, 807–818 (1994).

    CAS  PubMed  Google Scholar 

  3. Olopade, O.I. & Rowley, J.D. in Cancer Medicine (eds. Holland, J.F. et al) 99–120 (Lea & Febiger, Philadelphia, 1993).

    Google Scholar 

  4. Cavenee, W.K. & White, R.L. The genetic basis of cancer. Sci. Am. 272, 72–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Knudson, A.G. Antioncogenes and human cancer. Proc. Natl. Acad. Sci. USA 90, 10914–10921 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Muleris, M., Salmon, R.J., Zafrani, B., Girodet, J. & Dutrillaux, B. Consistent deficiencies of chromosome 18 and of the short arm of chromosome 17 in eleven cases of human large bowel cancer: a possible recessive determinism. Ann. Genet. 28, 206–213 (1985).

    CAS  PubMed  Google Scholar 

  8. Cho, K.R. et al. The DCC gene: structural analysis and mutations in colorectal carcinomas. Genomics 19, 525–531 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. lonov, Y., Peinado, M.A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  Google Scholar 

  10. Thibodeau, S.N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Aaltonen, L.A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Marra, G. & Boland, C.R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J. Natl. Cancer Inst. 87, 1114–1125 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Cho, K.R. & Fearon, E.R. DCC: linking tumor suppressor genes and altered cell surface interactions in cancer?. Curr. Opin. Genet. Dev. 5, 72–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Hahn, S.A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Rojas, K., Silverman, G.A., Hudson, J.R., & Overhauser, J. Integration of the 1993-94 Genethon genetic linkage map for chromosome 18 with the physical map using a somatic cell hybrid mapping panel. Genomics 25, 329–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Powell, S.M. et al. Molecular diagnosis of familial adenomatous polyposis. N. Engl. J. Med. 329, 1982–1987 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. van der Luijt, R. et al. Rapid detection of translation-terminating mutations at the adenomatous polyposis coli (APC) gene by direct protein truncation test. Genomics 20, 1–4 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Riggins, G.J. et al. Mad-related genes in the human. Nature Genet. 13, 347–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Akiyama, M. et al. Mutation frequency in human blood cells increases with age. Mutat Res. 338, 141–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Loeb, L.A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079 (1991).

    CAS  PubMed  Google Scholar 

  21. Martin, G.M. et al. Somatic mutations are frequent and increase with age in human kidney epithelial cells. Hum. Mol. Genet. 5, 215–221 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Pietenpol, J.A. et al. Paradoxical inhibition of solid tumor cell growth by bcl2. Cancer Res. 54, 3714–3717 (1994).

    CAS  PubMed  Google Scholar 

  23. Willson, J. Cell culture of human colon adenomas and carcinomas. Cancer Res. 47, 2704–2713 (1987).

    CAS  PubMed  Google Scholar 

  24. Markowitz, S. et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Jen, J. et al. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N. Engl. J. Med. 331, 213–221 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Hackman, P., Gabbani, G., Osterholm, A.M., Hellgren, D. & Lambert, B. Spontaneous length variation in microsatellite DMA from human t-cell clones. Genes Chrom. Cancer 14, 215–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Ried, T. et al. Specific metaphase and interphase detection of the breakpoint region in 8q24 of Burkitt lymphoma cells by triple-color fluorescence in situ hybridization. Genes Chromosom. Cancer 4, 69–74 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Lichter, P. & Cremer, T. in Human Cytogenetics: A Practical Approach (eds Rooney, D.E. & Czepulkowski, B.H.) 157–192 (IRL, Oxford, 1992).

    Google Scholar 

  29. van den Engh, G., Sachs, R. & Trask, B.J. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. Science 257, 1410–1412 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Lengauer, C. et al. Large-scale isolation of human 1 p36-specific p1 clones and their use for fluorescence in situ hybridization. Genet. Anal. Tech. Appl. 11, 140–147 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Papadopoulos, N. et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Leach, F.S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiagalingam, S., Lengauer, C., Leach, F. et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet 13, 343–346 (1996). https://doi.org/10.1038/ng0796-343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0796-343

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing