Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Use of a cDNA microarray to analyse gene expression patterns in human cancer

Abstract

The development and progression of cancer1–3 and the experimental reversal of tumorigenicity4,5 are accompanied by complex changes in patterns of gene expression. Microarrays of cDNA provide a powerful tool for studying these complex phenomena6–8. The tumorigenic properties of a human melanoma cell line, UACC-903, can be suppressed by introduction of a normal human chromosome 6, resulting in a reduction of growth rate, restoration of contact inhibition, and suppression of both soft agar clonogenicity and tumorigenicity in nude mice4,5,9. We used a high density microarray of 1,161 DNA elements to search for differences in gene expression associated with tumour suppression in this system. Fluorescent probes for hybridization were derived from two sources of cellular mRNA [UACC-903 and UACC-903(+6)] which were labelled with different fluors to provide a direct and internally controlled comparison of the mRNA levels corresponding to each arrayed gene. The fluorescence signals representing hybridization to each arrayed gene were analysed to determine the relative abundance in the two samples of mRNAs corresponding to each gene. Previously unrecognized alterations in the expression of specific genes provide leads for further investigation of the genetic basis of the tumorigenic phenotype of these cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

References

  1. Vogelstein, B. & Kinzler, K.W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    Article  CAS  Google Scholar 

  2. Weinberg, R.A. The molecular basis of oncogenes and tumor suppressor genes. Ann. NY Acad. Sci. 758, 331–338 (1995).

    Article  CAS  Google Scholar 

  3. Levine, A.J. The tumor suppressor genes. Annu. Rev. Biochem. 62, 623–651 (1993).

    Article  CAS  Google Scholar 

  4. Trent, J.M. et al. Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science 247, 568–571 (1990).

    Article  CAS  Google Scholar 

  5. Su, Y. et al. Reversion of monochromosome-mediated suppression of tumorigenicity in malignant melanoma by retroviral transduction. Cancer Res. 56, 3186–3191 (1996).

    CAS  PubMed  Google Scholar 

  6. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  7. Shalon, D., Smith, S.J. & Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 (1996).

    Article  CAS  Google Scholar 

  8. Schena, M. et al. Parallel human genome analysis: microarray-based expression of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10539–11286 (1996).

    Article  Google Scholar 

  9. Ray, M.E., Su, Y.A., Meltzer, P.S. & Trent, J.M. Isolation and characterization of genes associated with chromosome-6 mediated tumor suppression in human malignant melanoma. Oncogene 12, 2527–2533 (1996).

    CAS  PubMed  Google Scholar 

  10. Soares, M.B. et al. Construction and characterization of a normalized cDNA library. Proc. Natl. Acad. Sci. USA 91, 9228–9232 (1994).

    Article  CAS  Google Scholar 

  11. Boguski, M.S. & Schuler, G.D. ESTablishing a human transcript map. Nature Genet. 10, 369–371 (1995).

    Article  CAS  Google Scholar 

  12. Vijayasaradhi, S., Doskoch, P.M., Wolchok, J. & Houghton, A.N. Melanocyte differentiation marker gp75, the brown locus protein, can be regulated independently of tyrosinase and pigmentation. J. Invest. Dermatol. 105, 113–119 (1995).

    Article  CAS  Google Scholar 

  13. Vijayasaradhi, S., Xu, Y., Bouchard, B. & Houghton, A.N., Intracellular sorting and targeting of melanosomal membrane proteins: identification of signals for sorting of the human brown locus protein, gp 75. J. Invest. Dermatol. 130, 807–820 (1995).

    CAS  Google Scholar 

  14. Nakao, J. et al. Expression of proteolipid protein gene is directly associated with secretion of a factor influencing oligodendroyte development. J. Neurochem. 6455, 2396–2403 (1995).

    Google Scholar 

  15. Graves, D.T., Barnhill, R., Galanopoulos, T. & Antoniades, H.N. Expression of monocyte chemotactic protein-1 in human melanoma in vivo. Am. J. Pathol. 140, 9–14 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kristensen, M.S., Deleuran, B.W., Larsen, C.G., Thestrup-Pedersen, K. & Paludan, K. Expression of monocyte chemotactic and activating factor (MCAF) in skin related cells. A comparative study. Cytokine 5, 520–524 (1993).

    Article  CAS  Google Scholar 

  17. Huang, S., Xie, K., Singh, R.K., Gutman, M. & Bar-Eli, M. Suppression of tumor growth and metastasis of murine renal adenocarcinoma by syngeneic fibroblasts genetically engineered to secrete the JE/MCP-1 cytokine. J. Interferon Cytokine Res. 15, 655–665 (1995).

    Article  CAS  Google Scholar 

  18. EI-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  Google Scholar 

  19. Miele, M.E. et al. Metastasis suppressed, but tumorigenicity and local invasiveness unaffected, in the human melanoma cell line MelJuSo after introduction of human chromosomes 1 or 6. Mol. Careinog. 15, 284–299 (1996).

    Article  CAS  Google Scholar 

  20. Jiang, H. et al. The melanoma differentiation-associated gene mda-6, which encodes the cyclin-dependent kinase inhibitor p21, is differentially expressed during growth, differentiation and progression in human melanoma cells. Oncogene 10, 1855–1864 (1995).

    CAS  PubMed  Google Scholar 

  21. Schuler, G.D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

    Article  CAS  Google Scholar 

  22. Lennon, G., Auffray, C., Polymeropoulos, M. & Soares, M.B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics 33, 151–152 (1996).

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article

Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14, 457–460 (1996). https://doi.org/10.1038/ng1296-457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1296-457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing