William L. McGuire Memorial Lecture. Antiestrogens: mechanisms of action and resistance in breast cancer

Breast Cancer Res Treat. 1997 May;44(1):23-38. doi: 10.1023/a:1005835428423.

Abstract

Antiestrogens have proven to be highly effective in the treatment of hormone-responsive breast cancer. However, resistance to antiestrogen therapy often develops. In addition, although tamoxifen-like antiestrogens are largely inhibitory and function as estrogen antagonists in breast cancer cells, they also have some estrogen-like activity in other cells of the body. Thus, recent efforts are being directed toward the development of even more tissue-selective antiestrogens, i.e. compounds that are antiestrogenic on breast and uterus while maintaining the beneficial estrogen-like actions on bone and the cardiovascular system. Efforts are also being directed toward understanding ligand structure-estrogen receptor (ER) activity relationships and characterizing the molecular changes that underlie alterations in parallel signal transduction pathways that impact on the ER. Recent findings show that antiestrogens, which are known to exert most of their effects through the ER of breast cancer cells, contact a different set of amino acids in the hormone binding domain of the ER than those contacted by estrogen, and evoke a different receptor conformation that results in reduced or no transcriptional activity on most genes. Resistance to antiestrogen therapy may develop due to changes at the level of the ER itself, and at pre- and post-receptor points in the estrogen receptor-response pathway. Resistance could arise in at least four ways: (1) ER loss or mutation; (2) Post-receptor alterations including changes in cAMP and phosphorylation pathways, or changes in coregulator and transcription factor interactions that affect the transcriptional activity of the ER; (3) Changes in growth factor production/sensitivity or paracrine cell-cell interactions; or (4) Pharmacological changes in the antiestrogen itself, including altered uptake and retention or metabolism of the antiestrogen. Model cell systems have been developed to study changes that accompany and define the antiestrogen resistant versus sensitive breast cancer phenotype. This information should lead to the development of antiestrogens with optimized tissue selectivity and agents to which resistance may develop more slowly. In addition, antiestrogens which work through somewhat different mechanisms of interaction with the ER should prove useful in treatment of some breast cancers that become resistant to a different category of antiestrogens.

Publication types

  • Lecture
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Drug Resistance
  • Estrogen Antagonists / pharmacology*
  • Estrogen Antagonists / therapeutic use
  • Female
  • Humans

Substances

  • Estrogen Antagonists